论文标题

用于发现个性化预测图像标记的反事实图像合成

Counterfactual Image Synthesis for Discovery of Personalized Predictive Image Markers

论文作者

Kumar, Amar, Hu, Anjun, Nichyporuk, Brennan, Falet, Jean-Pierre R., Arnold, Douglas L., Tsaftaris, Sotirios, Arbel, Tal

论文摘要

发现可预测未来疾病结果的患者特定成像标记可以帮助我们更好地理解疾病进化的个人水平异质性。实际上,可以在医学实践中采用的可以提供数据驱动的个性化标记的深度学习模型。在这项工作中,我们证明了数据驱动的生物标志物发现可以通过反事实综合过程来实现。我们展示了如何使用深层的条件生成模型来扰动基线图像中的局部成像特征,这些图像与特定于受试者的未来疾病进化有关,并导致反事实图像有望具有不同的未来结果。因此,候选生物标志物是由于检查了此过程中受到干扰的一组功能而产生的。通过在大型,多中心多发性硬化症(MS)临床试验磁共振成像(MRI)数据集(RRMS)患者数据集(MRI)数据集(RRMS)患者数据集中进行的几项实验,我们证明,我们的模型与反映成像的变化相反,这些功能反映了未来MRI LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LES LESS级别的变化。其他定性结果表明,我们的模型有可能发现未来活动的新颖和主题的预测标记。

The discovery of patient-specific imaging markers that are predictive of future disease outcomes can help us better understand individual-level heterogeneity of disease evolution. In fact, deep learning models that can provide data-driven personalized markers are much more likely to be adopted in medical practice. In this work, we demonstrate that data-driven biomarker discovery can be achieved through a counterfactual synthesis process. We show how a deep conditional generative model can be used to perturb local imaging features in baseline images that are pertinent to subject-specific future disease evolution and result in a counterfactual image that is expected to have a different future outcome. Candidate biomarkers, therefore, result from examining the set of features that are perturbed in this process. Through several experiments on a large-scale, multi-scanner, multi-center multiple sclerosis (MS) clinical trial magnetic resonance imaging (MRI) dataset of relapsing-remitting (RRMS) patients, we demonstrate that our model produces counterfactuals with changes in imaging features that reflect established clinical markers predictive of future MRI lesional activity at the population level. Additional qualitative results illustrate that our model has the potential to discover novel and subject-specific predictive markers of future activity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源