论文标题
反射光学的低维结构 - 热 - 绩效(停止)模型的子空间鉴定
Subspace identification of low-dimensional Structural-Thermal-Optical-Performance (STOP) models of reflective optics
论文作者
论文摘要
在本文中,我们研究了使用子空间系统识别技术来估计反射光学的瞬态结构 - 热 - 光学性能(Stop)模型的可行性。作为测试案例,我们使用牛顿望远镜结构。这项工作是出于需要开发基于模型的数据驱动技术来预测,估计和控制热效应的预测,估计和控制光学系统中的热诱导的波前畸变,例如地面和太空望远镜,在苛刻的环境中运行的光学仪器,光刻机械机器以及高级高速公电系统的光学组成部分。我们估计并验证瞬态停止动力学的状态空间模型。首先,我们在Comsol多物理学中对系统进行建模。然后,我们使用livelink进行MATLAB软件模块将波前畸变数据从Comsol导出到MATLAB。该数据用于测试Python中实现的子空间识别方法。停止模型的建模和估计的主要挑战之一是它们本质上是较大的。停止模型的大规模性质源自光学,热和结构现象和物理过程的耦合。我们的结果表明,可以通过低维状态空间模型准确估算所考虑的光学系统的大维停止动力学。由于它们的低维质和状态空间形式,这些模型可以有效地用于热诱导的波前畸变的预测,估计和控制。开发的MATLAB,COMSOL和PYTHON代码可在线提供。
In this paper, we investigate the feasibility of using subspace system identification techniques for estimating transient Structural-Thermal-Optical Performance (STOP) models of reflective optics. As a test case, we use a Newtonian telescope structure. This work is motivated by the need for the development of model-based data-driven techniques for prediction, estimation, and control of thermal effects and thermally-induced wavefront aberrations in optical systems, such as ground and space telescopes, optical instruments operating in harsh environments, optical lithography machines, and optical components of high-power laser systems. We estimate and validate a state-space model of a transient STOP dynamics. First, we model the system in COMSOL Multiphysics. Then, we use LiveLink for MATLAB software module to export the wavefront aberrations data from COMSOL to MATLAB. This data is used to test the subspace identification method that is implemented in Python. One of the main challenges in modeling and estimation of STOP models is that they are inherently large-dimensional. The large-scale nature of STOP models originates from the coupling of optical, thermal, and structural phenomena and physical processes. Our results show that large-dimensional STOP dynamics of the considered optical system can be accurately estimated by low-dimensional state-space models. Due to their low-dimensional nature and state-space forms, these models can effectively be used for the prediction, estimation, and control of thermally-induced wavefront aberrations. The developed MATLAB, COMSOL, and Python codes are available online.