论文标题

量子局部平衡方法耗散流体动力学

Quantum local-equilibrium approach to dissipative hydrodynamics

论文作者

Mabillard, Joël, Gaspard, Pierre

论文摘要

使用量子力学的Schrödinger图片,在局部平衡方法中,宏观流体动力方程是为多体平衡方法得出的。在这种方法中,统计运算符是根据与基本保守数量和其他慢速模式相关的微观密度来定义的,可能是由于连续对称性破坏而产生的,以及与这些密度结合的巨菲尔德。可以推导功能身份,使我们能够识别平均电流密度的可逆和耗散部分,从而获得共轭宏观菲尔德时间演变的一般方程,并建立与投影操作方法的关系。通过将PEIERLS-BOGOLIUBOV不等式应用于量子积分波动定理,熵产生被证明是无负的。使用偶联宏观场梯度的膨胀,运输系数由Green-Kubo公式给出,并且可以用量子Einstein-Helfand公式表示熵的生产率,这意味着其与第二种热力学法律一致。结果适用于多组分流体,可以扩展到连续对称性断裂的冷凝物阶段。

The macroscopic hydrodynamic equations are derived for many-body systems in the local-equilibrium approach, using the Schrödinger picture of quantum mechanics. In this approach, statistical operators are defined in terms of microscopic densities associated with the fundamentally conserved quantities and other slow modes possibly emerging from continuous symmetry breaking, as well as macrofields conjugated to these densities. Functional identities can be deduced, allowing us to identify the reversible and dissipative parts of the mean current densities, to obtain general equations for the time evolution of the conjugate macrofields, and to establish the relationship to projection-operator methods. The entropy production is shown to be nonnegative by applying the Peierls-Bogoliubov inequality to a quantum integral fluctuation theorem. Using the expansion in the gradients of the conjugate macrofields, the transport coefficients are given by Green-Kubo formulas and the entropy production rate can be expressed in terms of quantum Einstein-Helfand formulas, implying its nonnegativity in agreement with the second law of thermodynamics. The results apply to multicomponent fluids and can be extended to condensed matter phases with broken continuous symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源