论文标题

以边缘为中心的多模式ML驱动的eHealth应用

Edge-centric Optimization of Multi-modal ML-driven eHealth Applications

论文作者

Kanduri, Anil, Shahhosseini, Sina, Naeini, Emad Kasaeyan, Alikhani, Hamidreza, Liljeberg, Pasi, Dutt, Nikil, Rahmani, Amir M.

论文摘要

智能EHealth应用程序通过遥感,连续监控和数据分析为客户提供个性化和预防性的数字医疗服务。智能EHealth应用程序从多种模态感知输入数据,将数据传输到边缘和/或云节点,并使用计算密集型机器学习(ML)算法处理数据。连续的嘈杂输入数据,不可靠的网络连接,ML算法的计算要求以及传感器 - 边缘云层之间的计算位置的选择会影响ML驱动的EHealth应用程序的效率。在本章中,我们介绍了以边缘为中心的技术,以优化计算放置,探索准确性 - 表现权衡以及用于ML驱动的EHEADH应用程序的跨层次感觉式合作。我们通过传感器 - 边缘云框架进行客观疼痛评估案例研究,证明了在日常设置中智能eHealth应用程序的实际用例。

Smart eHealth applications deliver personalized and preventive digital healthcare services to clients through remote sensing, continuous monitoring, and data analytics. Smart eHealth applications sense input data from multiple modalities, transmit the data to edge and/or cloud nodes, and process the data with compute intensive machine learning (ML) algorithms. Run-time variations with continuous stream of noisy input data, unreliable network connection, computational requirements of ML algorithms, and choice of compute placement among sensor-edge-cloud layers affect the efficiency of ML-driven eHealth applications. In this chapter, we present edge-centric techniques for optimized compute placement, exploration of accuracy-performance trade-offs, and cross-layered sense-compute co-optimization for ML-driven eHealth applications. We demonstrate the practical use cases of smart eHealth applications in everyday settings, through a sensor-edge-cloud framework for an objective pain assessment case study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源