论文标题
ACSGREGNET:通过交叉和自我发项融合的腰椎CT的无监督关节仿射和差异登记的深度学习框架
ACSGRegNet: A Deep Learning-based Framework for Unsupervised Joint Affine and Diffeomorphic Registration of Lumbar Spine CT via Cross- and Self-Attention Fusion
论文作者
论文摘要
注册在医学图像分析中起着重要作用。已经研究了基于深度学习的方法进行医学图像注册,该方法利用卷积神经网络(CNN)有效地从一对图像中回归了密集的变形场。但是,CNN的限制是其提取语义上有意义的内部和图像间空间对应关系的能力,这对于准确的图像注册至关重要。这项研究提出了一个新型的端到端深度学习框架,用于无监督的仿射和差异可变形的注册,称为acsgregnet,该框架集成了一个交叉注意模块,以建立用于内部解剖结构的自我主张特征对应关系和一个自我主张模块。两个注意模块都建立在变压器编码器上。每个注意模块的输出分别馈送到解码器中以生成速度场。我们进一步引入了一个封闭式的融合模块,以融合两个速度场。然后将融合速度场集成到密集的变形场。广泛的实验是在腰椎CT图像上进行的。一旦训练了模型,就可以一枪注册一对看不见的腰椎。通过450对椎骨数据评估,我们的方法的平均骰子为0.963,平均距离误差为0.321mm,这比最先进的(SOTA)更好。
Registration plays an important role in medical image analysis. Deep learning-based methods have been studied for medical image registration, which leverage convolutional neural networks (CNNs) for efficiently regressing a dense deformation field from a pair of images. However, CNNs are limited in its ability to extract semantically meaningful intra- and inter-image spatial correspondences, which are of importance for accurate image registration. This study proposes a novel end-to-end deep learning-based framework for unsupervised affine and diffeomorphic deformable registration, referred as ACSGRegNet, which integrates a cross-attention module for establishing inter-image feature correspondences and a self-attention module for intra-image anatomical structures aware. Both attention modules are built on transformer encoders. The output from each attention module is respectively fed to a decoder to generate a velocity field. We further introduce a gated fusion module to fuse both velocity fields. The fused velocity field is then integrated to a dense deformation field. Extensive experiments are conducted on lumbar spine CT images. Once the model is trained, pairs of unseen lumbar vertebrae can be registered in one shot. Evaluated on 450 pairs of vertebral CT data, our method achieved an average Dice of 0.963 and an average distance error of 0.321mm, which are better than the state-of-the-art (SOTA).