论文标题
重新访问佩尔森的弹性塑料接触理论:一种简单的封闭式解决方案和严格的边界条件证明
Revisiting the Persson theory of elastoplastic contact: A simpler closed-form solution and a rigorous proof of boundary conditions
论文作者
论文摘要
Persson的接触理论广泛用于研究名义上平坦的粗糙表面与刚性平坦之间的纯正常相互作用。在文献中,Persson的理论成功地应用于具有比例无关的硬度$ H $的弹性塑料接触问题。但是,就无限的罪恶总和而言,它产生了封闭形式的解决方案,即$ p(p,ξ)$。在这项研究中,发现$ p(p,ξ)$具有更简单的形式,这是三个高斯函数的叠加。边界条件$ p(p = 0,ξ)= p(p = h,ξ)= 0 $的严格证明是根据新解决方案给出的。
Persson's theory of contact is extensively used in the study of the purely normal interaction between a nominally flat rough surface and a rigid flat. In the literature, Persson's theory was successfully applied to the elastoplastic contact problem with a scale-independent hardness $H$. However, it yields a closed-form solution, $P(p, ξ)$, in terms of an infinite sum of sines. In this study, $P(p, ξ)$ is found to have a simpler form which is a superposition of three Gaussian functions. A rigorous proof of the boundary condition $P(p=0, ξ)=P(p=H, ξ) = 0$ is given based on the new solution.