论文标题
无监督的图形光谱特征为作物产量预测降级
Unsupervised Graph Spectral Feature Denoising for Crop Yield Prediction
论文作者
论文摘要
在县粒度上预测每年农作物的产量对于国家粮食生产和价格稳定至关重要。在本文中,为了实现更好的作物产量预测,利用最新的图形信号处理(GSP)工具来利用相邻县之间的空间介绍,我们通过图谱滤波来证明相关的特征,这些特征是深度学习预测模型的输入。具体而言,我们首先构建了一个具有边缘权重的组合图,该图可以通过公制学习编码土壤和位置特征的县对县的相似性。然后,我们通过最大的后验(MAP)配方使用图形laplacian正常化程序(GLR)来定义特征。我们关注的挑战是估算关键的重量参数$μ$,交易fifelity术语和GLR,这是噪声差异的函数,以无监督的方式。我们首先使用发现局部恒定区域的图集集合检测(GCD)过程直接从噪声浪费的图形信号估算噪声方差。然后,我们通过偏置变化分析计算最佳$μ$ $最小化近似均值误差函数。收集到的USDA数据的实验结果表明,使用DeNo的特征作为输入,可以明显改善作物产量预测模型的性能。
Prediction of annual crop yields at a county granularity is important for national food production and price stability. In this paper, towards the goal of better crop yield prediction, leveraging recent graph signal processing (GSP) tools to exploit spatial correlation among neighboring counties, we denoise relevant features via graph spectral filtering that are inputs to a deep learning prediction model. Specifically, we first construct a combinatorial graph with edge weights that encode county-to-county similarities in soil and location features via metric learning. We then denoise features via a maximum a posteriori (MAP) formulation with a graph Laplacian regularizer (GLR). We focus on the challenge to estimate the crucial weight parameter $μ$, trading off the fidelity term and GLR, that is a function of noise variance in an unsupervised manner. We first estimate noise variance directly from noise-corrupted graph signals using a graph clique detection (GCD) procedure that discovers locally constant regions. We then compute an optimal $μ$ minimizing an approximate mean square error function via bias-variance analysis. Experimental results from collected USDA data show that using denoised features as input, performance of a crop yield prediction model can be improved noticeably.