论文标题
特殊Lagrangians的某些圆柱形切线的独特性
Uniqueness of some cylindrical tangent cones to special Lagrangians
论文作者
论文摘要
We show that if an exact special Lagrangian $N\subset \mathbb{C}^n$ has a multiplicity one, cylindrical tangent cone of the form $\mathbb{R}^{k}\times \mathbf{C}$ where $\mathbf{C}$ is a special Lagrangian cone with smooth, connected link, then this tangent cone is unique provided $ \ mathbf {c} $满足集成性条件。例如,当$ \ mathbf {c} = \ mathbf {c} _ {hl}^{m} $是harvey-lawson $ t^{m-1} $锥,$ m \ ne 8,9 $时,这适用于此。
We show that if an exact special Lagrangian $N\subset \mathbb{C}^n$ has a multiplicity one, cylindrical tangent cone of the form $\mathbb{R}^{k}\times \mathbf{C}$ where $\mathbf{C}$ is a special Lagrangian cone with smooth, connected link, then this tangent cone is unique provided $\mathbf{C}$ satisfies an integrability condition. This applies, for example, when $\mathbf{C}= \mathbf{C}_{HL}^{m}$ is the Harvey-Lawson $T^{m-1}$ cone for $m\ne 8,9$.