论文标题

关于吉布斯(Gibbs

A Note on the Existence of Gibbs Marked Point Processes with Applications in Stochastic Geometry

论文作者

Petráková, Martina

论文摘要

本文概括了无限量标记的吉布斯点过程的最新存在结果。我们尝试将存在定理用于从随机几何形状中的两个模型。首先,我们在$ \ mathbb {r}^d $中显示了Gibbs Facet过程的存在,并具有排斥性交互。我们还证明,具有有吸引力相互作用的有限体积吉布斯刻画工艺不必存在。之后,我们研究了$ \ mathbb {r}^2 $的gibbs-laguerre tessellations。上述存在结果无法使用,因为它的假设之一不满意,但是我们能够显示出具有特定能量函数的无限量gibbs-laguerre工艺的存在,这是在我们几乎肯定会看到一个点的假设下。

This paper generalizes a recent existence result for infinite-volume marked Gibbs point processes. We try to use the existence theorem for two models from stochastic geometry. First, we show the existence of Gibbs facet processes in $\mathbb{R}^d$ with repulsive interactions. We also prove that the finite-volume Gibbs facet processes with attractive interactions need not exist. Afterwards, we study Gibbs-Laguerre tessellations of $\mathbb{R}^2$. The mentioned existence result cannot be used, since one of its assumptions is not satisfied for tessellations, but we are able to show the existence of an infinite-volume Gibbs-Laguerre process with a particular energy function, under the assumption that we almost surely see a point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源