论文标题

GNN4REL:用于预测电路可靠性降解的图形神经网络

GNN4REL: Graph Neural Networks for Predicting Circuit Reliability Degradation

论文作者

Alrahis, Lilas, Knechtel, Johann, Klemme, Florian, Amrouch, Hussam, Sinanoglu, Ozgur

论文摘要

过程变化和设备老化对电路设计师构成了深远的挑战。如果没有确切地了解变化对电路路径延迟的影响,则无法正确估算违反时间违规的电路带。对于先进的技术节点,此问题加剧了,其中晶体管尺寸达到原子水平,并且已建立的边缘受到严格限制。因此,传统的最坏情况分析变得不切实际,导致无法忍受的性能开销。相反,过程变化/衰老感知的静态时序分析(STA)为设计人员提供了准确的统计延迟分布。可以有效地估算小且足够的时机护板。但是,这样的分析是昂贵的,因为它需要密集的蒙特卡洛模拟。此外,它需要访问基于机密的物理老化模型,以生成STA所需的标准细胞库。 在这项工作中,我们采用图形神经网络(GNN)来准确估计过程变化和设备老化对电路内任何路径延迟的影响。我们提出的GNN4REL框架使设计人员能够执行快速准确的可靠性估计,而无需访问晶体管模型,标准细胞库甚至STA;这些组件均通过铸造厂的训练将其纳入GNN模型中。具体而言,对GNN4REL进行了针对工业14NM测量数据进行校准的FinFET技术模型的培训。通过我们对EPFL和ITC-99基准以及RISC-V处理器进行的广泛实验,我们成功估计了所有路径的延迟降级(尤其是在几秒钟内),平均绝对误差降至0.01个百分点。

Process variations and device aging impose profound challenges for circuit designers. Without a precise understanding of the impact of variations on the delay of circuit paths, guardbands, which keep timing violations at bay, cannot be correctly estimated. This problem is exacerbated for advanced technology nodes, where transistor dimensions reach atomic levels and established margins are severely constrained. Hence, traditional worst-case analysis becomes impractical, resulting in intolerable performance overheads. Contrarily, process-variation/aging-aware static timing analysis (STA) equips designers with accurate statistical delay distributions. Timing guardbands that are small, yet sufficient, can then be effectively estimated. However, such analysis is costly as it requires intensive Monte-Carlo simulations. Further, it necessitates access to confidential physics-based aging models to generate the standard-cell libraries required for STA. In this work, we employ graph neural networks (GNNs) to accurately estimate the impact of process variations and device aging on the delay of any path within a circuit. Our proposed GNN4REL framework empowers designers to perform rapid and accurate reliability estimations without accessing transistor models, standard-cell libraries, or even STA; these components are all incorporated into the GNN model via training by the foundry. Specifically, GNN4REL is trained on a FinFET technology model that is calibrated against industrial 14nm measurement data. Through our extensive experiments on EPFL and ITC-99 benchmarks, as well as RISC-V processors, we successfully estimate delay degradations of all paths -- notably within seconds -- with a mean absolute error down to 0.01 percentage points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源