论文标题
用于离散时间鹰队过程的灵活的随机直方图内核
A flexible, random histogram kernel for discrete-time Hawkes processes
论文作者
论文摘要
霍克斯过程是一种自我激发的随机过程,用于描述现象,过去事件增加了未来事件发生的可能性。这项工作提出了一种对这些变体进行建模的灵活方法,即离散的时间霍克斯过程。霍克斯过程的大多数标准模型都依赖于一个参数形式来描述过去事件的影响(称为触发内核)的功能。这可能不足以捕获真正的激发模式,尤其是对于复杂数据。通过利用跨维的马尔可夫链蒙特卡洛推理技术,我们提出的触发内核的模型可以采用任何步骤函数的形式,比参数形式具有更大的灵活性。我们首先通过全面的仿真研究证明了拟议模型的实用性。这包括单变量场景和多元方案,其中有多个互动的鹰派过程。然后,我们将提出的模型应用于几个案例研究:两国在19009年大流行的早期至中期之间的相互作用,以意大利和法国为例,以及在两个近亲,印度尼西亚和菲律宾的恐怖活动之间的恐怖活动相互作用,然后是菲律宾的三个地区。
Hawkes processes are a self-exciting stochastic process used to describe phenomena whereby past events increase the probability of the occurrence of future events. This work presents a flexible approach for modelling a variant of these, namely discrete-time Hawkes processes. Most standard models of Hawkes processes rely on a parametric form for the function describing the influence of past events, referred to as the triggering kernel. This is likely to be insufficient to capture the true excitation pattern, particularly for complex data. By utilising trans-dimensional Markov chain Monte Carlo inference techniques, our proposed model for the triggering kernel can take the form of any step function, affording significantly more flexibility than a parametric form. We first demonstrate the utility of the proposed model through a comprehensive simulation study. This includes univariate scenarios, and multivariate scenarios whereby there are multiple interacting Hawkes processes. We then apply the proposed model to several case studies: the interaction between two countries during the early to middle stages of the COVID-19 pandemic, taking Italy and France as an example, and the interaction of terrorist activity between two countries in close spatial proximity, Indonesia and the Philippines, and then within three regions of the Philippines.