论文标题

在强$ \ Mathcal {a}^{\ Mathcal {i}} $ - 概率度量空间中序列的统计收敛

On strong $\mathcal{A}^{\mathcal{I}}$-statistical convergence of sequences in probabilistic metric spaces

论文作者

Malik, Prasanta, Das, Samiran

论文摘要

在本文中,使用非负常规总和矩阵$ \ MATHCAL {a} $和一个非平凡的可允许的理想$ \ Mathcal {i} $ in $ \ MATHBB {n} $我们研究了一些强$ \ \ m nathcal {a}^a}^a}^{\ nathcal { $ \ MATHCAL {a}^{\ MATHCAL {i}} $ - 概率度量空间中序列的统计尾部。我们还介绍了强$ \ Mathcal {a}^{\ Mathcal {i^*}} $ - 概率度量空间中的统计库奇,并研究其与$ \ Mathcal {a} a}^{\ Mathcal {\ Mathcal {i}} $ - 统计的Cauchyness的关系。此外,我们研究了强$ \ Mathcal {a}^{\ Mathcal {i}} $ - 统计限制点和强$ \ Mathcal {a}^{\ Mathcal {\ Mathcal {i}} $ - 概率公位中序列的统计集群点。

In this paper using a non-negative regular summability matrix $\mathcal{A}$ and a non-trivial admissible ideal $\mathcal{I}$ in $\mathbb{N}$ we study some basic properties of strong $\mathcal{A}^{\mathcal{I}}$-statistical convergence and strong $\mathcal{A}^{\mathcal{I}}$-statistical Cauchyness of sequences in probabilistic metric spaces not done earlier. We also introduce strong $\mathcal{A}^{\mathcal{I^*}}$-statistical Cauchyness in probabilistic metric space and study its relationship with strong A$\mathcal{A}^{\mathcal{I}}$-statistical Cauchyness there. Further, we study some basic properties of strong $\mathcal{A}^{\mathcal{I}}$-statistical limit points and strong $\mathcal{A}^{\mathcal{I}}$-statistical cluster points of a sequence in probabilistic metric spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源