论文标题
使用矩闭合和仿真器的空间SIR过程的高斯过程近似
A Gaussian-process approximation to a spatial SIR process using moment closures and emulators
论文作者
论文摘要
控制疾病扩散的动力学很难建模,因为感染是基本病原体以及人类或动物行为的功能。当建模疾病如何在不同的空间位置之间传播时,这一挑战就会增加。许多提出的空间流行病学模型都需要权衡取舍,要么通过抽象理论传播动态,拟合确定性模型,要么通过为许多模拟提供大量计算资源。我们提出了一种使用高斯过程近似复杂的空间扩散动力学的方法。我们首先提出了柔性的空间扩展到众所周知的爵士随机过程,然后我们得出了矩闭合近似的近似。这种矩闭合近似产生了普通的微分方程,以使体外均值和协方差的演变和传染性随着时间的流逝。由于这些ODE是通过MCMC拟合我们模型的瓶颈,因此我们使用低级别的仿真器近似它们。这种近似是我们通过空间位置和时间进行嘈杂,报告的新感染计数的分层模型的基础。我们证明使用我们的模型从基础,真实的空间跳跃过程中对模拟感染进行推断。然后,我们将我们的方法应用于2015年底至2016年初在巴西的新寨卡病毒感染的模型。
The dynamics that govern disease spread are hard to model because infections are functions of both the underlying pathogen as well as human or animal behavior. This challenge is increased when modeling how diseases spread between different spatial locations. Many proposed spatial epidemiological models require trade-offs to fit, either by abstracting away theoretical spread dynamics, fitting a deterministic model, or by requiring large computational resources for many simulations. We propose an approach that approximates the complex spatial spread dynamics with a Gaussian process. We first propose a flexible spatial extension to the well-known SIR stochastic process, and then we derive a moment-closure approximation to this stochastic process. This moment-closure approximation yields ordinary differential equations for the evolution of the means and covariances of the susceptibles and infectious through time. Because these ODEs are a bottleneck to fitting our model by MCMC, we approximate them using a low-rank emulator. This approximation serves as the basis for our hierarchical model for noisy, underreported counts of new infections by spatial location and time. We demonstrate using our model to conduct inference on simulated infections from the underlying, true spatial SIR jump process. We then apply our method to model counts of new Zika infections in Brazil from late 2015 through early 2016.