论文标题
在造成$ \ mathbb c^n $的爆炸中,异态异构体
On holomorphic isometries into blow-ups of $\mathbb C^n$
论文作者
论文摘要
我们研究了Kähler-Instein歧管,该歧管将全体形态的静脉测定纳入广义的Burns-Simanca歧管$(\ tilde {\ Mathbb c}^n,g_s)$或Eguchi-Hanson coplord $(\ tilde {\ tilde {\ Mathbb c}^2,g__}此外,我们证明$(\ tilde {\ mathbb c}^n,g_s)$和$(\ tilde {\ mathbb c}^2,g_ {eh})$不是与任何同质边界域的亲戚。
We study the Kähler-Einstein manifolds which admits a holomorphic isometry into either the generalized Burns-Simanca manifold $(\tilde {\mathbb C}^n, g_S)$ or the Eguchi-Hanson manifold $(\tilde {\mathbb C}^2, g_{EH})$. Moreover, we prove that $(\tilde {\mathbb C}^n, g_S)$ and $(\tilde {\mathbb C}^2, g_{EH})$ are not relatives to any homogeneous bounded domain.