论文标题

在造成$ \ mathbb c^n $的爆炸中,异态异构体

On holomorphic isometries into blow-ups of $\mathbb C^n$

论文作者

Loi, Andrea, Mossa, Roberto

论文摘要

我们研究了Kähler-Instein歧管,该歧管将全体形态的静脉测定纳入广义的Burns-Simanca歧管$(\ tilde {\ Mathbb c}^n,g_s)$或Eguchi-Hanson coplord $(\ tilde {\ tilde {\ Mathbb c}^2,g__}此外,我们证明$(\ tilde {\ mathbb c}^n,g_s)$和$(\ tilde {\ mathbb c}^2,g_ {eh})$不是与任何同质边界域的亲戚。

We study the Kähler-Einstein manifolds which admits a holomorphic isometry into either the generalized Burns-Simanca manifold $(\tilde {\mathbb C}^n, g_S)$ or the Eguchi-Hanson manifold $(\tilde {\mathbb C}^2, g_{EH})$. Moreover, we prove that $(\tilde {\mathbb C}^n, g_S)$ and $(\tilde {\mathbb C}^2, g_{EH})$ are not relatives to any homogeneous bounded domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源