论文标题

多层次的重要性抽样对与McKean-Vlasov方程相关的罕见事件

Multilevel Importance Sampling for Rare Events Associated With the McKean--Vlasov Equation

论文作者

Rached, Nadhir Ben, Haji-Ali, Abdul-Lateef, Pillai, Shyam Mohan Subbiah, Tempone, Raúl

论文摘要

这项工作结合了多级蒙特卡洛(MLMC)和重要性抽样,以估计稀有事件的数量,可以表达为对Lipschitz对Lipschitz的期望,可观察到对广泛的McKean-McKean-vlasov随机微分方程的溶液。我们将(Ben Rached等,2023)在此上下文中引入的双回路蒙特卡洛(DLMC)估计器将其扩展到多级设置。我们制定了一种新型的多级DLMC估计器,并执行全面的成本错误分析,从而产生新的和改善的复杂性结果。至关重要的是,我们将一个对立的采样器设计用于估计水平差异,以确保与单级DLMC估计器相比,多级DLMC估计器的计算复杂性降低。为了解决罕见事件,我们应用了通过随机最佳控制(Ben Rached等,2023)在多级DLMC估计器中获得的重要性采样方案。将重要性采样和多级DLMC结合起来,与单级DLMC估计量相比,相比,相比,相关的常数大大降低了计算复杂性,而无需采样。我们说明了提出的多级DLMC估计器对库拉莫托模型的有效性$ \ mathcal {o}(\ Mathrm {tol} _ {\ Mathrm {r}}}^{ - 3})$,同时提供可行的稀有数量估计值,直到处方相对误差容忍$ \ Mathrm {tolrm {tol} _ {

This work combines multilevel Monte Carlo (MLMC) with importance sampling to estimate rare-event quantities that can be expressed as the expectation of a Lipschitz observable of the solution to a broad class of McKean--Vlasov stochastic differential equations. We extend the double loop Monte Carlo (DLMC) estimator introduced in this context in (Ben Rached et al., 2023) to the multilevel setting. We formulate a novel multilevel DLMC estimator and perform a comprehensive cost-error analysis yielding new and improved complexity results. Crucially, we devise an antithetic sampler to estimate level differences guaranteeing reduced computational complexity for the multilevel DLMC estimator compared with the single-level DLMC estimator. To address rare events, we apply the importance sampling scheme, obtained via stochastic optimal control in (Ben Rached et al., 2023), over all levels of the multilevel DLMC estimator. Combining importance sampling and multilevel DLMC reduces computational complexity by one order and drastically reduces the associated constant compared to the single-level DLMC estimator without importance sampling. We illustrate the effectiveness of the proposed multilevel DLMC estimator on the Kuramoto model from statistical physics with Lipschitz observables, confirming the reduced complexity from $\mathcal{O}(\mathrm{TOL}_{\mathrm{r}}^{-4})$ for the single-level DLMC estimator to $\mathcal{O}(\mathrm{TOL}_{\mathrm{r}}^{-3})$ while providing a feasible estimate of rare-event quantities up to prescribed relative error tolerance $\mathrm{TOL}_{\mathrm{r}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源