论文标题
定义以对象为中心事件数据的案例和变体
Defining Cases and Variants for Object-Centric Event Data
论文作者
论文摘要
过程的执行留下了信息系统中事件数据的痕迹。这些事件数据可以通过过程挖掘技术进行分析。对于传统的流程挖掘技术,必须将每个事件与一个对象(例如公司的客户)相关联。与一个对象相关的事件形成一个称为案例的事件序列。一个案例描述了通过过程中的端到端运行。事件数据中包含的案例可用于发现过程模型,检测频繁的瓶颈或学习预测模型。但是,在现实生活中遇到的事件,例如ERP系统通常可以与多个对象相关联。传统的顺序案例概念缺少这些以对象为中心的事件数据,因为这些数据显示了图形结构。一个人可能通过使以对象为中心的事件数据来迫使传统案例概念。但是,平坦操纵数据并删除信息。因此,与传统事件日志的案例概念相似的概念对于启用以对象为中心的事件数据的应用程序采用不同的过程挖掘任务是必要的。在本文中,我们介绍了以对象为中心的过程挖掘的案例概念:过程执行。这些是基于图形的案例概括,如传统过程采矿中所考虑的。此外,我们提供了提取过程执行的技术。基于这些执行,我们确定使用图同构的属性相对于属性的等效过程行为。关于事件活动的等效过程执行是以对象为中心的变体,即传统过程挖掘中变体的概括。我们为以对象为中心的变体提供了可视化技术。贡献的可伸缩性和效率得到了广泛的评估。此外,我们提供了一个案例研究,显示了现实生活中最常见的以对象为中心的变体。
The execution of processes leaves traces of event data in information systems. These event data can be analyzed through process mining techniques. For traditional process mining techniques, one has to associate each event with exactly one object, e.g., the company's customer. Events related to one object form an event sequence called a case. A case describes an end-to-end run through a process. The cases contained in event data can be used to discover a process model, detect frequent bottlenecks, or learn predictive models. However, events encountered in real-life information systems, e.g., ERP systems, can often be associated with multiple objects. The traditional sequential case concept falls short of these object-centric event data as these data exhibit a graph structure. One might force object-centric event data into the traditional case concept by flattening it. However, flattening manipulates the data and removes information. Therefore, a concept analogous to the case concept of traditional event logs is necessary to enable the application of different process mining tasks on object-centric event data. In this paper, we introduce the case concept for object-centric process mining: process executions. These are graph-based generalizations of cases as considered in traditional process mining. Furthermore, we provide techniques to extract process executions. Based on these executions, we determine equivalent process behavior with respect to an attribute using graph isomorphism. Equivalent process executions with respect to the event's activity are object-centric variants, i.e., a generalization of variants in traditional process mining. We provide a visualization technique for object-centric variants. The contribution's scalability and efficiency are extensively evaluated. Furthermore, we provide a case study showing the most frequent object-centric variants of a real-life event log.