论文标题
arnol'd猫地图晶格
Arnol'd cat map lattices
论文作者
论文摘要
我们在相空间和配置空间中构建Arnol'd Cat Map晶格场理论。在相空间中,我们强加了线性耦合映射的进化运算符是一个映射情况下的直接概括,是符号组的元素。为此,我们利用CAT图和斐波那契序列之间的对应关系。这些系统的混乱特性也可以从配置空间中的运动方程式来理解,它们描述了倒的谐波振荡器,并且潜在的与相位空间的环形紧凑型竞争的潜在竞争的失控行为。我们使用标准基准来探测动力学系统的确定性混乱,即完整密集的不稳定的周期轨道,长期导致成真轨道和混合。时期的光谱表现出对相互作用的强度和范围的强烈依赖。
We construct Arnol'd cat map lattice field theories in phase space and configuration space. In phase space we impose that the evolution operator of the linearly coupled maps be an element of the symplectic group, in direct generalization of the case of one map. To this end we exploit the correspondence between the cat map and the Fibonacci sequence. The chaotic properties of these systems can be, also, understood from the equations of motion in configuration space, where they describe inverted harmonic oscillators, with the runaway behavior of the potential competing with the toroidal compactification of the phase space. We highlight the spatio-temporal chaotic properties of these systems using standard benchmarks for probing deterministic chaos of dynamical systems, namely the complete dense set of unstable periodic orbits, which, for long periods, lead to ergodicity and mixing. The spectrum of the periods exhibits a strong dependence on the strength and the range of the interaction.