论文标题
在存在血浆散射的情况下,将重力镜头用于快速无线电爆发
Gravitational lensing in the presence of plasma scattering with application to Fast Radio Bursts
论文作者
论文摘要
我们描述了快速无线电爆发(FRB)的重力镜头如何受到镜头附近或源和观察者之间的某个地方的等离子体屏幕的影响。通过湍流介质的波传递会影响重力图像放大倍率,镜头概率(尤其是对于强大的放大事件)以及图像之间的时间延迟。由于血浆散射,源源的角度扩大,因此被抑制了放大。图像之间的时间延迟是由于不同图像的光子轨迹沿光子轨迹的不同色散度量(DM)的结果进行了修改。由于波散射,每个图像灯曲线也宽扩大,因此图像可以具有不同的时间曲线。前两个效应对于恒星和亚赛质量晶状体最严重,而在宇宙/观察者宇宙学距离处的镜头和等离子体筛选的最后一个(散射宽片)。这可能会限制使用FRB来测量其宇宙丰度。另一方面,当图像之间的时间延迟很大时,使瞬态源的灯曲线具有两个或更多良好的分离峰时,沿不同图像的波路沿不同图像的波路路径的不同DM可以探测IgM中的IgM在尺度上$ \ sillesim 10^{-6} $ rad rad的尺度上的波动,并探索了使用斑点的Recess fresse fresse fresse fresse fresse fresse fresse。沿两个图像路径的不同旋转度量(RM)可以将线性极化辐射从源转换为部分圆形极化。
We describe how gravitational lensing of fast radio bursts (FRBs) is affected by a plasma screen in the vicinity of the lens or somewhere between the source and the observer. Wave passage through a turbulent medium affects gravitational image magnification, lensing probability (particularly for strong magnification events), and the time delay between images. The magnification is suppressed because of the broadening of the angular size of the source due to scattering by the plasma. The time delay between images is modified as the result of different dispersion measure (DM) along photon trajectories for different images. Each of the image lightcurve is also broadened due to wave scattering so that the images could have distinct temporal profiles. The first two effects are most severe for stellar and sub-stellar mass lens, and the last one (scatter broadening) for lenses and plasma screens at cosmological distances from the source/observer. This could limit the use of FRBs to measure their cosmic abundance. On the other hand, when the time delay between images is large, such that the lightcurve of a transient source has two or more well separated peaks, the different DMs along the wave paths of different images can probe density fluctuations in the IGM on scales $\lesssim 10^{-6}$ rad and explore the patchy reionization history of the universe using lensed FRBs at high redshifts. Different rotation measure (RM) along two image paths can convert linearly polarized radiation from a source to partial circular polarization.