论文标题

封闭动力学系统的量子力学

Quantum Mechanics for Closure of Dynamical Systems

论文作者

Freeman, David, Giannakis, Dimitrios, Slawinska, Joanna

论文摘要

我们提出了一个基于量子力学和库普曼操作员理论的数学框架的动态系统的数据驱动参数化方案。给定一个国家的某些组成部分未知的系统,该方法涉及在时间依赖的量子状态下定义替代系统,该量子态在每个时间步中确定未解决的自由度的通量。量子状态是经典可观察物的有限维希尔伯特(Hilbert)空间的密度操作员,并在Koopman操作员引起的动作下随着时间的流逝而发展。量子状态还根据量子贝叶斯定律的定律更新解决变量的新值,该定律是通过操作员值映射实现的。内核方法用于学习数据驱动的基础函数,并将量子状态,可观察结果和进化算子作为矩阵表示。由此产生的计算方案自动保留积极性,有助于参数化系统的物理一致性。我们分析了应用于Lorenz 63和Lorenz 96多尺度系统的两种不同方式的结果,并显示这种方法如何保留基本混乱系统的重要统计和定性特性。

We propose a scheme for data-driven parameterization of unresolved dimensions of dynamical systems based on the mathematical framework of quantum mechanics and Koopman operator theory. Given a system in which some components of the state are unknown, this method involves defining a surrogate system in a time-dependent quantum state which determines the fluxes from the unresolved degrees of freedom at each timestep. The quantum state is a density operator on a finite-dimensional Hilbert space of classical observables and evolves over time under an action induced by the Koopman operator. The quantum state also updates with new values of the resolved variables according to a quantum Bayes' law, implemented via an operator-valued feature map. Kernel methods are utilized to learn data-driven basis functions and represent quantum states, observables, and evolution operators as matrices. The resulting computational schemes are automatically positivity-preserving, aiding in the physical consistency of the parameterized system. We analyze the results of two different modalities of this methodology applied to the Lorenz 63 and Lorenz 96 multiscale systems, and show how this approach preserves important statistical and qualitative properties of the underlying chaotic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源