论文标题

具有单个FPGA的可扩展超声超声梁形的高级合成设计

High-level synthesis design of scalable ultrafast ultrasound beamformer with single FPGA

论文作者

Kou, Zhengchang, You, Qi, Kim, Jihun, Dong, Zhijie, Lowerison, Matthew R., Sekaran, Nathiya V. Chandra, Llano, Daniel A., Song, Pengfei, Oelze, Michael L.

论文摘要

超声超声成像对于高级超声成像技术,例如超声定位显微镜(ULM)和功能性超声(FUS)至关重要。当前的超声超声成像受到与射频(RF)信号相关的超高数据带宽的挑战,以及计算昂贵的波束成型过程的延迟。因此,基于CPU或GPU的现有软件光束器仍然难以捉摸,连续的超快数据采集和波束形成仍然难以捉摸。为了应对这些挑战,拟议的工作引入了一种新的方法,该方法通过使用高级合成,在现场可编程栅极阵列(FPGA)上实现专门针对超快平面波成像(PWI)的超声超声波束形式。 1)提出了在单个FPGA上的波束形式的并行实现,以减少延迟压缩技术来减少延迟曲线大小,这使得运行时预定的预定时间预定的延迟轮廓从外部内存中加载和延迟重复使用2)矢量化通道数据获取,这可以通过延迟重复使用来启用,以及3)使用固定的总结网络来减少Logic Forgusig of Logic of Logic资源的消耗。我们提出的方法比当前的FPGA光束器提出了两个独特的优势:1)高可扩展性,可以通过使用Xilinx高级合成作为开发工具来快速适应不同的FPGA资源和光束成型速度的需求,而2)通过使用单个FPGA来完成紧凑的外形设计,而不是完成多个FPGA而不是多个FPGA。通过提出的方法,就输入原始RF样品而言,可持续的平均波束形成速率为4.83 g样品/秒。将所提出的波束形成器的图像质量与Verasonics Vantage系统上的软件束形式进行了比较,用于幻影成像和体内小鼠脑成像。

Ultrafast ultrasound imaging is essential for advanced ultrasound imaging techniques such as ultrasound localization microscopy (ULM) and functional ultrasound (fUS). Current ultrafast ultrasound imaging is challenged by the ultrahigh data bandwidth associated with the radio frequency (RF) signal, and by the latency of the computationally expensive beamforming process. As such, continuous ultrafast data acquisition and beamforming remain elusive with existing software beamformers based on CPUs or GPUs. To address these challenges, the proposed work introduces a novel method of implementing an ultrafast ultrasound beamformer specifically for ultrafast plane wave imaging (PWI) on a field programmable gate array (FPGA) by using high-level synthesis. A parallelized implementation of the beamformer on a single FPGA was proposed by 1) utilizing a delay compression technique to reduce the delay profile size, which enables both run-time pre-calculated delay profile loading from external memory and delay reuse 2) vectorizing channel data fetching which is enabled by delay reuse, and 3) using fixed summing networks to reduce consumption of logic resources. Our proposed method presents two unique advantages over current FPGA beamformers: 1) high scalability that allows fast adaptation to different FPGA resources and beamforming speed demands by using Xilinx High-Level Synthesis as the development tool, and 2) allow a compact form factor design by using a single FPGA to complete the beamforming instead of multiple FPGAs. With the proposed method, a sustainable average beamforming rate of 4.83 G samples/second in terms of input raw RF sample was achieved. The resulting image quality of the proposed beamformer was compared with the software beamformer on the Verasonics Vantage system for both phantom imaging and in vivo imaging of a mouse brain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源