论文标题

城市地形的实时神经密集高程图和不确定性估计

Real-time Neural Dense Elevation Mapping for Urban Terrain with Uncertainty Estimations

论文作者

Yang, Bowen, Zhang, Qingwen, Geng, Ruoyu, Wang, Lujia, Liu, Ming

论文摘要

对地形信息有良好的了解对于改善复杂地形上各种下游任务的执行至关重要,尤其是对于腿部机器人的运动和导航。我们为神经城市地形重建提供了一个新颖的框架,并进行了不确定性估计。它通过稀疏的激光雷达观察结果在线生成密集的以机器人为中心的高程图。我们设计了一种新颖的预处理和点特征表示方法,可确保在整合多点云帧时确保高鲁棒性和计算效率。然后,贝叶斯gan模型恢复了详细的地形结构,同时提供了像素的重建不确定性。我们通过广泛的模拟和现实世界实验评估了所提出的管道。它在移动平台上展示了​​具有高质量和实时性能的有效地形重建,这进一步使腿部机器人的下游任务受益。 (有关更多详细信息,请参见https://kin-zhang.github.io/ndem/。)

Having good knowledge of terrain information is essential for improving the performance of various downstream tasks on complex terrains, especially for the locomotion and navigation of legged robots. We present a novel framework for neural urban terrain reconstruction with uncertainty estimations. It generates dense robot-centric elevation maps online from sparse LiDAR observations. We design a novel pre-processing and point features representation approach that ensures high robustness and computational efficiency when integrating multiple point cloud frames. A Bayesian-GAN model then recovers the detailed terrain structures while simultaneously providing the pixel-wise reconstruction uncertainty. We evaluate the proposed pipeline through extensive simulation and real-world experiments. It demonstrates efficient terrain reconstruction with high quality and real-time performance on a mobile platform, which further benefits the downstream tasks of legged robots. (See https://kin-zhang.github.io/ndem/ for more details.)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源