论文标题
大型机器类型通信中时间鲁棒性的分析
Analysis of Temporal Robustness in Massive Machine Type Communications
论文作者
论文摘要
第五代(5G)网络的发展需要支持最新的用例,这些用例需要强大的网络连接,以实现网络代理的协作性能,例如多机器人系统和车辆到任何东西(V2X)通信。不幸的是,当应用于固定网络时,用户设备的有限通信范围和电池限制证实了建议的已知鲁棒性指标的不适当性,当应用于时间切换通信图时。此外,大多数现有鲁棒性指标的计算涉及非确定性的多项式时间复杂性,因此最适合小型网络。尽管作品大量作品,但文献中没有进行$ \ textit {低复杂性} $时间鲁棒性指标,而本文中则没有进行通信网络,目前的工作旨在填补这一空白。更详细地说,我们的工作为大型机器类型通信(MMTC)网络提供了网络鲁棒性的随机分析。数值研究证实了时间鲁棒性度量的拟议分析框架的精确性。除了研究对各种系统参数网络鲁棒性的影响,例如群集头(CH)概率,功率阈值值,网络大小和节点故障概率,我们还证明了观察到的数值趋势是合理的。
The evolution of fifth generation (5G) networks needs to support the latest use cases, which demand robust network connectivity for the collaborative performance of the network agents, like multi-robot systems and vehicle to anything (V2X) communication. Unfortunately, the user device's limited communication range and battery constraint confirm the unfitness of known robustness metrics suggested for fixed networks, when applied to time-switching communication graphs. Furthermore, the calculation of most of the existing robustness metrics involves non-deterministic polynomial-time complexity, and hence are best-fitted only for small networks. Despite a large volume of works, the complete analysis of a $\textit{low-complexity}$ temporal robustness metric for a communication network is absent in the literature, and the present work aims to fill this gap. More in detail, our work provides a stochastic analysis of network robustness for a massive machine type communication (mMTC) network. The numerical investigation corroborates the exactness of the proposed analytical framework for temporal robustness metric. Along with studying the impact on network robustness of various system parameters, such as cluster head (CH) probability, power threshold value, network size, and node failure probability, we justify the observed trend of numerical results probabilistically.