论文标题
使用高频贸易数据学习金融网络
Learning Financial Networks with High-frequency Trade Data
论文作者
论文摘要
财务网络通常通过将标准时间序列分析应用于低频收集的基于价格的经济变量(例如,每日或每月股票收益或实现的波动性)来估算。这些网络用于风险监控和研究金融市场中的信息流。高频盘中贸易数据集可以通过利用高分辨率信息来提供对网络链接的更多见解。但是,由于其异步性质,非线性动力学和非组织性,这些数据集构成了重大的建模挑战。为了应对这些挑战,我们使用随机森林估算金融网络。我们网络中的边缘是通过使用一家公司的微观结构度量来确定的,以预测另一家公司的市场度量变化(实现波动或返回峰度)的变化迹象。我们首先研究了2007 - 09年美国金融危机的时期网络连通性的演变。我们发现,这些网络在2007年的密度最高,并且在2006年与雷曼兄弟(Lehman Brothers)相关的高度连通性。对公司之间联系的性质的第二次分析表明,较大的企业倾向于比小型公司提供更好的预测能力,这一发现与市场微观结构文献的先前作品一致。
Financial networks are typically estimated by applying standard time series analyses to price-based economic variables collected at low-frequency (e.g., daily or monthly stock returns or realized volatility). These networks are used for risk monitoring and for studying information flows in financial markets. High-frequency intraday trade data sets may provide additional insights into network linkages by leveraging high-resolution information. However, such data sets pose significant modeling challenges due to their asynchronous nature, nonlinear dynamics, and nonstationarity. To tackle these challenges, we estimate financial networks using random forests. The edges in our network are determined by using microstructure measures of one firm to forecast the sign of the change in a market measure (either realized volatility or returns kurtosis) of another firm. We first investigate the evolution of network connectivity in the period leading up to the U.S. financial crisis of 2007-09. We find that the networks have the highest density in 2007, with high degree connectivity associated with Lehman Brothers in 2006. A second analysis into the nature of linkages among firms suggests that larger firms tend to offer better predictive power than smaller firms, a finding qualitatively consistent with prior works in the market microstructure literature.