论文标题
Shap-Cam:基于Shapley值的卷积神经网络的视觉解释
Shap-CAM: Visual Explanations for Convolutional Neural Networks based on Shapley Value
论文作者
论文摘要
解释深度卷积神经网络最近一直引起人们的关注,因为它有助于了解网络的内部操作以及为什么它们做出某些决定。显着地图强调了与网络决策基本联系的显着区域,是可视化和分析计算机视觉社区深层网络的最常见方法之一。但是,由于未经证实的激活图权重的提议,这些图像没有稳固的理论基础,并且未能考虑每个像素之间的关系,因此现有方法生成的显着图不能表示图像中的真实信息。在本文中,我们开发了一种基于类激活映射的新型事后视觉解释方法,称为Shap-Cam。与以前的基于梯度的方法不同,Shap-Cam通过通过Shapley值获得每个像素的重要性来摆脱对梯度的依赖。我们证明,Shap-Cam可以在解释决策过程中获得更好的视觉性能和公平性。我们的方法在识别和本地化任务方面的表现优于以前的方法。
Explaining deep convolutional neural networks has been recently drawing increasing attention since it helps to understand the networks' internal operations and why they make certain decisions. Saliency maps, which emphasize salient regions largely connected to the network's decision-making, are one of the most common ways for visualizing and analyzing deep networks in the computer vision community. However, saliency maps generated by existing methods cannot represent authentic information in images due to the unproven proposals about the weights of activation maps which lack solid theoretical foundation and fail to consider the relations between each pixel. In this paper, we develop a novel post-hoc visual explanation method called Shap-CAM based on class activation mapping. Unlike previous gradient-based approaches, Shap-CAM gets rid of the dependence on gradients by obtaining the importance of each pixel through Shapley value. We demonstrate that Shap-CAM achieves better visual performance and fairness for interpreting the decision making process. Our approach outperforms previous methods on both recognition and localization tasks.