论文标题

粒子表面的准本地研究及其稳定性一般的稳定性

Quasi-local studies of the particle surfaces and their stability in general spacetimes

论文作者

Song, Yong, Zhang, Chuanyu

论文摘要

在本文中,通过Claudel,Virbhadra和Ellis给出的光子表面的定义的启发,我们给出了粒子表面的准局部定义。根据这个定义,可以研究一般时空中圆形轨道的演变。尤其是,我们指出,该定义可用于在固定空间中获得球形圆形轨道,而克劳德尔,维巴德拉和埃利斯无法获得。此外,我们给出了在没有重力的时空中排除粒子表面的条件。同时,我们给出了一般时空中粒子表面稳定性的准本地定义。从这个定义来看,可以在一般时空中获得最内向稳定的圆形轨道(ISCO)的演化方程。为了验证这些定义的正确性,我们在某些特殊情况下研究了圆形轨道,结果都与先前的结果一致。

In this paper, enlightened by the definition of the photon surface given by Claudel, Virbhadra and Ellis, we give a quasi-local definition of the particle surface. From this definition, one can study the evolution of the circular orbits in general spacetime. Especially, we pointed out that this definition can be used to get the spherical circular orbits in stationary spacetimes which cannot be got by the definition of Claudel, Virbhadra and Ellis. Further, we give a condition to exclude the particle surface in spacetime without gravity. Simultaneously, we give a quasi-local definition of the stability of the particle surface in general spacetime. From this definition, one can get the evolution equation of the innermost stable circular orbit (ISCO) in general spacetime. To verify the correctness of these definitions, we studied the circular orbits in some special cases and the results are all consistent with the previous results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源