论文标题

扭曲的圆环结的带状长度

Ribbonlength of twisted torus knots

论文作者

Kim, Hyoungjun, No, Sungjong, Yoo, Hyungkee

论文摘要

一个结$ k $的带状肋骨$(k)$是任何平坦的打结色带的比例,核心$ k $的宽度为宽度。一个扭曲的圆环结$ t_ {p,q; r,s} $是从圆环结$ t_ {p,q} $中获得的,通过扭动$ r $ a相邻的链条$ s $ s $ full Twist。在本文中,我们证明了$ t_ {p,q; r,s} $的功能边长少于$ 2(\ max \ {p,q,r \} +| s | r)$,其中$ p $和$ p $和$ q $是正的。此外,如果$ r \ r \ leq p-q $,则$ t_ {p,q; r,s} $的功能区长度较小或等于$ 2(p+(| s | -1)r)$。

The ribbonlength Rib$(K)$ of a knot $K$ is the infimum of the ratio of the length of any flat knotted ribbon with core $K$ to its width. A twisted torus knot $T_{p,q;r,s}$ is obtained from the torus knot $T_{p,q}$ by twisting $r$ adjacent strands $s$ full twists. In this paper, we show that the ribbonlength of $T_{p,q;r,s}$ is less then or equal to $2(\max \{ p, q, r \} +|s|r)$ where $p$ and $q$ are positive. Furthermore, if $r \leq p-q$, then the ribbonlength of $T_{p,q;r,s}$ is less then or equal to $2(p+(|s|-1)r)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源