论文标题
Carleson类型的度量和Möbius不变功能空间
A Carleson type measure and a family of Möbius invariant function spaces
论文作者
论文摘要
对于$ 0 <s <1 $,令$ \ {z_n \} $是打开单位磁盘中的序列,使得$ \ sum_n(1- | z_n |^2)^sΔ__{z_n} $是$ S $ -S $ -CARLESON度量。在本文中,我们考虑了Volterra型操作员,Blaschke产品的倒数和具有规定的零序列的二阶复杂微分方程的$ S $ -CARLESON度量与Möbius不变的$ F(P,P,P-2,S)$空间之间的联系。
For $0<s<1$, let $\{z_n\}$ be a sequence in the open unit disk such that $\sum_n (1-|z_n|^2)^s δ_{z_n}$ is an $s$-Carleson measure. In this paper, we consider the connections between this $s$-Carleson measure and the theory of Möbius invariant $F(p, p-2, s)$ spaces by the Volterra type operator, the reciprocal of a Blaschke product, and second order complex differential equations having a prescribed zero sequence.