论文标题
用于表示鼠标社会行为的表示学习的跨骨骼交互图集合网络
Cross-Skeleton Interaction Graph Aggregation Network for Representation Learning of Mouse Social Behaviour
论文作者
论文摘要
小鼠的自动社会行为分析已成为行为神经科学中越来越流行的研究领域。最近,姿势信息(即关键点或骨骼的位置)已被用来解释小鼠的社会行为。然而,在现有方法中很少研究和解码小鼠关键点基础的社会互动信息。特别是,由于高度可变形的身体形状和模棱两可的运动模式,建模小鼠之间复杂的社交互动是一项挑战。为了处理交互建模问题,我们在这里提出了一个交叉骨骼相互作用图聚合网络(CS-IGANET),以学习自由相互作用的小鼠的丰富动态,其中跨骨骼节点级交互模块(CS-NLI)用于模型多级相互作用(即intra-neta-neta-intera-inter-Inter-inter-inter-crossement-seletions skeletions skeletions)。此外,我们设计了一种新颖的互动感知变压器(IAT),以动态学习社交行为的图形表示并更新节点级表示,并在我们提出的互动意识到的自我注意力下的机制的指导下。最后,为了增强我们的模型的表示能力,提出了辅助自我监督的学习任务来测量跨骨骼节点之间的相似性。标准CRMI13-SKERTON和我们的PDMB-Skeleton数据集的实验结果表明,我们所提出的模型的表现优于其他几种最先进的方法。
Automated social behaviour analysis of mice has become an increasingly popular research area in behavioural neuroscience. Recently, pose information (i.e., locations of keypoints or skeleton) has been used to interpret social behaviours of mice. Nevertheless, effective encoding and decoding of social interaction information underlying the keypoints of mice has been rarely investigated in the existing methods. In particular, it is challenging to model complex social interactions between mice due to highly deformable body shapes and ambiguous movement patterns. To deal with the interaction modelling problem, we here propose a Cross-Skeleton Interaction Graph Aggregation Network (CS-IGANet) to learn abundant dynamics of freely interacting mice, where a Cross-Skeleton Node-level Interaction module (CS-NLI) is used to model multi-level interactions (i.e., intra-, inter- and cross-skeleton interactions). Furthermore, we design a novel Interaction-Aware Transformer (IAT) to dynamically learn the graph-level representation of social behaviours and update the node-level representation, guided by our proposed interaction-aware self-attention mechanism. Finally, to enhance the representation ability of our model, an auxiliary self-supervised learning task is proposed for measuring the similarity between cross-skeleton nodes. Experimental results on the standard CRMI13-Skeleton and our PDMB-Skeleton datasets show that our proposed model outperforms several other state-of-the-art approaches.