论文标题

抛物线PDE的不连续的Galerkin时间步进的错误概况

Error Profile for Discontinuous Galerkin Time Stepping of Parabolic PDEs

论文作者

McLean, William, Mustapha, Kassem

论文摘要

我们考虑使用不连续的Galerkin(DG)方法使用分段$ \ t $中的分段多项式来考虑线性抛物线问题的时间离散化,对于$ r \ ge1 $,最大步骤尺寸〜$ k $。众所周知,DG错误的空间$ L_2 $ - 及时是最佳订单$ K^r $,并且对于$ r \ ge2 $,在节点上的$ r \ ge2 $,$ k^{2r-1} $。我们表明,在$ n $ th subinterval $(t_ {n-1},t_n)$上,DG错误中的主要术语与本地权利radau radau radau radau $ r $。此错误配置文件意味着DG错误是每个间隔中右手高斯 - radau正交点处的$ k^{r+1} $的顺序。我们表明,左端点$ t_ {n-1} $在DG解决方案中跳跃的标准提供了准确的\ emph {a postteriori}估计值,对于子间隙$(t_ {n-1},t_n)$的最大误差。此外,一个简单的后处理步骤产生了a \ emph {连续} $ r $的分段多项式,并具有最佳的全局收敛速率$ k^{r+1} $。我们通过一些数值实验来说明这些结果。

We consider the time discretization of a linear parabolic problem by the discontinuous Galerkin (DG) method using piecewise polynomials of degree at most $r-1$ in $t$, for $r\ge1$ and with maximum step size~$k$. It is well known that the spatial $L_2$-norm of the DG error is of optimal order $k^r$ globally in time, and is, for $r\ge2$, superconvergent of order $k^{2r-1}$ at the nodes. We show that on the $n$th subinterval $(t_{n-1},t_n)$, the dominant term in the DG error is proportional to the local right Radau polynomial of degree $r$. This error profile implies that the DG error is of order $k^{r+1}$ at the right-hand Gauss--Radau quadrature points in each interval. We show that the norm of the jump in the DG solution at the left end point $t_{n-1}$ provides an accurate \emph{a posteriori} estimate for the maximum error over the subinterval $(t_{n-1},t_n)$. Furthermore, a simple post-processing step yields a \emph{continuous} piecewise polynomial of degree $r$ with the optimal global convergence rate of order $k^{r+1}$. We illustrate these results with some numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源