论文标题
通过在Banach空间中无界光谱运算符的功能计算来构建强衍生图
Construction of strong derivable maps via functional calculus of unbounded spectral operators in Banach spaces
论文作者
论文摘要
我们提供了足够的条件,可以为存在强的衍生图的存在,并通过采用我们先前的效果来计算其导数,从而在Banach空间中通过功能性计算产生的强大衍生物,而在Banach空间中的功能性计算产生的衍生物,并在Banach空间上有效地凸出了经典结果的本地凸出空间。我们将此结果应用于获得一系列积分序列,该积分会收敛到由$ r $的功能计算引起的映射的完整局部凸出空间扩展的积分。
We provide sufficient conditions for the existence of a strong derivable map and calculate its derivative by employing a result in our previous work on strong derivability of maps arising by functional calculus of an unbounded scalar type spectral operator $R$ in a Banach space and the generalization to complete locally convex spaces of a classical result valid in the Banach space context. We apply this result to obtain a sequence of integrals converging to an integral of a complete locally convex space extension of a map arising by functional calculus of $R$.