论文标题
基于古典和新颖的癌症诊断方法中人工智能的进步。评论
Advances of Artificial Intelligence in Classical and Novel Spectroscopy-Based Approaches for Cancer Diagnostics. A Review
论文作者
论文摘要
癌症是全球死亡的主要原因之一。快速安全的早期,术中和术中诊断可能会显着有助于成功的癌症识别和治疗。在过去的15年中,人工智能在增强癌症诊断技术方面发挥了越来越多的作用。这篇评论涵盖了在MRI和CT等良好技术中人工智能应用的进步。此外,它显示出高潜力与基于光谱的基于光谱的方法,这些方法正在开发用于移动,超快速和低侵入性诊断。我将展示基于光谱的方法如何通过使薄薄的或甲莫妥蛋白和欧洲蛋白染色过时来减少组织制备进行病理分析的时间。我将介绍用于快速和低侵入性前和体内组织分类的光谱工具的例子,以确定肿瘤及其边界。另外,我将讨论与MRI和CT相反,光谱测量不需要化学剂来提高癌症成像的质量,这有助于开发更安全的诊断方法。总体而言,我们将看到,光谱和人工智能的结合构成了一个非常有前途且快速发展的医疗技术领域,它将很快增加可用的癌症诊断方法。
Cancer is one of the leading causes of death worldwide. Fast and safe early-stage, pre- and intra-operative diagnostics can significantly contribute to successful cancer identification and treatment. Artificial intelligence has played an increasing role in the enhancement of cancer diagnostics techniques in the last 15 years. This review covers the advances of artificial intelligence applications in well-established techniques such as MRI and CT. Also, it shows its high potential in combination with optical spectroscopy-based approaches that are under development for mobile, ultra-fast, and low-invasive diagnostics. I will show how spectroscopy-based approaches can reduce the time of tissue preparation for pathological analysis by making thin-slicing or haematoxylin-and-eosin staining obsolete. I will present examples of spectroscopic tools for fast and low-invasive ex- and in-vivo tissue classification for the determination of a tumour and its boundaries. Also, I will discuss that, contrary to MRI and CT, spectroscopic measurements do not require the administration of chemical agents to enhance the quality of cancer imaging which contributes to the development of more secure diagnostic methods. Overall, we will see that the combination of spectroscopy and artificial intelligence constitutes a highly promising and fast-developing field of medical technology that will soon augment available cancer diagnostic methods.