论文标题

组织靠近三个尖端凹槽分叉的空间本地化结构

Organization of spatially localized structures near a codimension-three cusp-Turing bifurcation

论文作者

Parra-Rivas, P., Champneys, A. R., Al-Sahadi, F., Gomila, D., Knobloch, E.

论文摘要

在无限域的进化问题中存在各种固定或移动的空间局部结构,受到高于一阶可逆空间相互作用的控制。这项工作在某个合成的三个奇点的一个空间维度中提供了通用的展开,该空间维度解释了此类局部状态在各种情况下的分叉图的组织,从非线性光学到流体机械,数学生物学及以后。当尖端分叉与均匀稳态之间的双晶型相关时,就会发生奇异性。后者对应于相应的空间动力学问题的汉密尔顿-HOPF点。这样的编码三个点有时在物理文献中称为lifshitz点。在空间系统保存第一个积分的最简单情况下,该系统由规范的第四阶标量系统描述。该问题包含三个小参数,两个参数展现了尖叉分叉,一个展开了图灵分叉。根据最低级非线性条款的符号的开放条件,揭示了几种情况。采用图灵分叉是亚临界的情况,考虑了各种参数制度,并阐明了局部结构的分叉图。揭示了丰富的分叉结构,其中涉及同层蛇产生的局部周期模式的区域与具有均匀核心的梅萨样模式之间的过渡。该理论被证明可以更普遍地在非线性光学,流体力学和兴奋的介质中产生的模型中获得的先前的数值结果。

A wide variety of stationary or moving spatially localized structures is present in evolution problems on unbounded domains, governed by higher-than-second-order reversible spatial interactions. This work provides a generic unfolding in one spatial dimension of a certain codimension-three singularity that explains the organization of bifurcation diagrams of such localized states in a variety of contexts, ranging from nonlinear optics to fluid mechanics, mathematical biology and beyond. The singularity occurs when a cusp bifurcation associated with the onset of bistability between homogeneous steady states encounters a pattern-forming, or Turing, bifurcation. The latter corresponds to a Hamiltonian-Hopf point of the corresponding spatial dynamics problem. Such codimension-three points are sometimes called Lifshitz points in the physics literature. In the simplest case where the spatial system conserves a first integral, the system is described by a canonical fourth order scalar system. The problem contains three small parameters, two that unfold the cusp bifurcation and one that unfolds the Turing bifurcation. Several cases are revealed, depending on open conditions on the signs of the lowest-order nonlinear terms. Taking the case in which the Turing bifurcation is subcritical, various parameter regimes are considered and the bifurcation diagrams of localized structures are elucidated. A rich bifurcation structure is revealed, which involves transitions between regions of localized periodic patterns generated by homoclinic snaking, and mesa-like patterns with uniform cores. The theory is shown to unify previous numerical results obtained in models arising in nonlinear optics, fluid mechanics, and excitable media more generally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源