论文标题
复杂的投影空间中的四学位的霍尔态叶子
Holomorphic foliations of degree four on the complex projective space
论文作者
论文摘要
在本文中,我们研究了复杂的投影空间上的四个学位的全态叶子$ \ mathbb {p}^n $,其中$ n \ geq 3 $,特别关注为这些叶子获得结构定理。此外,对于foliation $ \ Mathcal {f} $ $ d $ d \ geq 4 $,带有足够高的$ k^{th} $ - 喷气,我们证明$ \ nathcal {f} $ thrastesspers thresspersed the Tresspersed offersepts the compacts hypersact hypersurface of the compact hypersurface of the compact hypersurface of the thyperface of y Mathcal cal cal calcal {F} $ \ mathcal {f} $是$ \ Mathcal {f}^2 $ by Rational Map上的叶面的背包。
In this paper, we study holomorphic foliations of degree four on complex projective space $\mathbb{P}^n$, where $n\geq 3$, with a special focus on obtaining a structural theorem for these foliations. Furthermore, for a foliation $\mathcal{F}$ of degree $d\geq 4$ with a sufficiently high $k^{th}$-jet, we prove that either $\mathcal{F}$ is transversely affine outside a compact hypersurface, or $\mathcal{F}$ is transversely projective outside a compact hypersurface, or $\mathcal{F}$ is the pull-back of a foliation on $\mathcal{F}^2$ by a rational map.