论文标题

复杂的投影空间中的四学位的霍尔态叶子

Holomorphic foliations of degree four on the complex projective space

论文作者

Fernández-Pérez, Arturo, Maia, Vângellis Sagnori

论文摘要

在本文中,我们研究了复杂的投影空间上的四个学位的全态叶子$ \ mathbb {p}^n $,其中$ n \ geq 3 $,特别关注为这些叶子获得结构定理。此外,对于foliation $ \ Mathcal {f} $ $ d $ d \ geq 4 $,带有足够高的$ k^{th} $ - 喷气,我们证明$ \ nathcal {f} $ thrastesspers thresspersed the Tresspersed offersepts the compacts hypersact hypersurface of the compact hypersurface of the compact hypersurface of the thyperface of y Mathcal cal cal calcal {F} $ \ mathcal {f} $是$ \ Mathcal {f}^2 $ by Rational Map上的叶面的背包。

In this paper, we study holomorphic foliations of degree four on complex projective space $\mathbb{P}^n$, where $n\geq 3$, with a special focus on obtaining a structural theorem for these foliations. Furthermore, for a foliation $\mathcal{F}$ of degree $d\geq 4$ with a sufficiently high $k^{th}$-jet, we prove that either $\mathcal{F}$ is transversely affine outside a compact hypersurface, or $\mathcal{F}$ is transversely projective outside a compact hypersurface, or $\mathcal{F}$ is the pull-back of a foliation on $\mathcal{F}^2$ by a rational map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源