论文标题

在离散的估值戒指和bruhat-tits建筑物上堆放着曲折矢量捆绑

Toric vector bundles over a discrete valuation ring and Bruhat-Tits buildings

论文作者

Kaveh, Kiumars, Manon, Christopher, Tsvelikhovskiy, Boris

论文摘要

我们将等级$ r $ r $ torus equivariant矢量捆绑在折叠方案上的$ \ mathcal {e} $上的$ \ mathfrak {x} $上的离散估值环$ \ mathcal {o} $ \ mathcal {o} $,根据$ \ mathfrak $ \ gl($ \ gl)的fan frous of分级线性linear maps $ nork $ \ the $ \ the $ \ mathfrak $ \ n of $ \ mathfraak $ \ n of the $ \ n Mathfraak $ \ n of(这是Klyachko一方面在田野上对圆环品种上的圆环矢量捆绑包的分类,另一方面,Mumford在$ \ Mathcal {o}上划分了摩托克方案上的earivariant Line捆绑包。我们还提供了一个简单的标准,即根据其分段线性映射,将$ \ Mathcal {e} $分配到圆环线束中。除其他外,这项工作奠定了研究曲线矢量束算术几何形状的基础。

We give a classification of rank $r$ torus equivariant vector bundles $\mathcal{E}$ on a toric scheme $\mathfrak{X}$ over a discrete valuation ring $\mathcal{O}$, in terms of graded piecewise linear maps $Φ$ from the fan of $\mathfrak{X}$ to the (extended) building of $GL(r)$. This is an extension of Klyachko's classification of torus equivariant vector bundles on toric varieties over a field on one hand, and Mumford's classification of equivariant line bundles on toric schemes over $\mathcal{O}$ on the other hand. We also give a simple criterion for equivariant splitting of $\mathcal{E}$ into a sum of toric line bundles in terms of its piecewise linear map. Among other things, this work lays the foundations for study of arithmetic geometry of toric vector bundles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源