论文标题

量子机学习中使用变异方法的一个示例

An example of use of Variational Methods in Quantum Machine Learning

论文作者

Simonetti, Marco, Perri, Damiano, Gervasi, Osvaldo

论文摘要

本文介绍了一个基于量子神经网络的深度学习系统,用于在平面上特定几何模式(两个摩尔分类问题)的点的二进制分类。我们认为,混合深度学习系统(经典 +量子)的使用不仅可以在计算加速度方面带来合理的好处,而且在理解基本现象和机制方面都可以带来好处。这将导致创建新的机器学习形式,以及量子计算领域的强大发展。所选数据集基于2D二进制分类生成器,该生成器有助于测试特定算法的有效性;它是一组2D点,形成两个散布的半圆。它在二维表示空间中显示了两个分离的数据集:因此,功能是单个点的两个坐标,$ x_1 $和$ x_2 $。目的是产生一个量子深神经网络,其可识别和分类点的可训练参数数量最少。

This paper introduces a deep learning system based on a quantum neural network for the binary classification of points of a specific geometric pattern (Two-Moons Classification problem) on a plane. We believe that the use of hybrid deep learning systems (classical + quantum) can reasonably bring benefits, not only in terms of computational acceleration but in understanding the underlying phenomena and mechanisms; that will lead to the creation of new forms of machine learning, as well as to a strong development in the world of quantum computation. The chosen dataset is based on a 2D binary classification generator, which helps test the effectiveness of specific algorithms; it is a set of 2D points forming two interspersed semicircles. It displays two disjointed data sets in a two-dimensional representation space: the features are, therefore, the individual points' two coordinates, $x_1$ and $x_2$. The intention was to produce a quantum deep neural network with the minimum number of trainable parameters capable of correctly recognising and classifying points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源