论文标题

通过双层网络体系结构进行遮挡感知实例分割

Occlusion-Aware Instance Segmentation via BiLayer Network Architectures

论文作者

Ke, Lei, Tai, Yu-Wing, Tang, Chi-Keung

论文摘要

分割高度重叠的图像对象是具有挑战性的,因为实际对象轮廓和图像上的遮挡边界通常没有区别。与先前的实例分割方法不同,我们将图像形成模型为两个重叠层的组成,并提出了双层卷积网络(BCNET),其中顶层检测到遮挡对象(遮挡器)和底层渗透到部分闭塞的实例(遮盖物)。遮挡关系与双层结构的显式建模自然地将遮挡和遮挡实例的边界解散,并在掩模回归过程中考虑了它们之间的相互作用。我们使用两个流行的卷积网络设计(即完全卷积网络(FCN)和图形卷积网络(GCN))研究了双层结构的功效。此外,我们通过将图像中的实例表示为单独的可学习封锁器和封闭式查询,从而使用视觉变压器(VIT)进行双层解耦。使用一个/两个阶段和基于查询的对象探测器具有各种骨架和网络层选择验证双层解耦合的概括能力,如图像实例分段基准(Coco,Kins,CocoA)和视频实例分割基准(YTVIS,OVIS,bddvis,bddvis,byd100 class,ocvis casterlys,themecy of Ocvis,by ocvis casterlys commants,coco,kins,cocoa),均可验证双层解耦合的概括能力,以验证双层的概述能力,以表明双层的概述能力。代码和数据可在https://github.com/lkeab/bcnet上找到。

Segmenting highly-overlapping image objects is challenging, because there is typically no distinction between real object contours and occlusion boundaries on images. Unlike previous instance segmentation methods, we model image formation as a composition of two overlapping layers, and propose Bilayer Convolutional Network (BCNet), where the top layer detects occluding objects (occluders) and the bottom layer infers partially occluded instances (occludees). The explicit modeling of occlusion relationship with bilayer structure naturally decouples the boundaries of both the occluding and occluded instances, and considers the interaction between them during mask regression. We investigate the efficacy of bilayer structure using two popular convolutional network designs, namely, Fully Convolutional Network (FCN) and Graph Convolutional Network (GCN). Further, we formulate bilayer decoupling using the vision transformer (ViT), by representing instances in the image as separate learnable occluder and occludee queries. Large and consistent improvements using one/two-stage and query-based object detectors with various backbones and network layer choices validate the generalization ability of bilayer decoupling, as shown by extensive experiments on image instance segmentation benchmarks (COCO, KINS, COCOA) and video instance segmentation benchmarks (YTVIS, OVIS, BDD100K MOTS), especially for heavy occlusion cases. Code and data are available at https://github.com/lkeab/BCNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源