论文标题

远程医疗的AI:对虚拟诊断解决方案(VD)的深度学习方法的评估

AI in Telemedicine: An Appraisal on Deep Learning-Based Approaches to Virtual Diagnostic Solutions (VDS)

论文作者

Oguine, Ozioma Collins, Oguine, Kanyifeechukwu Jane

论文摘要

远程医疗作为医疗保健提供方法的进步预示了现代医学的新黎明。它在我们当代社会中的快节奏发展是对人工智能和信息技术进步的信任。本文进行了一项描述性研究,以广泛探索AI在医疗保健提供中的实施,并更全面地看出,在增强虚拟诊断解决方案(VDS)方面,各种远程医学创新的可用性。这项研究进一步探讨了针对虚拟诊断解决方案的深度学习模型优化中的显着发展。还强调了有关虚拟诊断解决方案(VD)和可预见挑战的进一步研究综述。结论性地,这项研究给出了远程医疗中人工智能的一般概述,其主要重点是针对虚拟诊断解决方案的深度学习方法。

Advancements in Telemedicine as an approach to healthcare delivery have heralded a new dawn in modern Medicine. Its fast-paced development in our contemporary society is credence to the advances in Artificial Intelligence and Information Technology. This paper carries out a descriptive study to broadly explore AI's implementations in healthcare delivery with a more holistic view of the usability of various Telemedical Innovations in enhancing Virtual Diagnostic Solutions (VDS). This research further explores notable developments in Deep Learning model optimizations for Virtual Diagnostic Solutions. A further research review on the prospects of Virtual Diagnostic Solutions (VDS) and foreseeable challenges was also highlighted. Conclusively, this research gives a general overview of Artificial Intelligence in Telemedicine with a central focus on Deep Learning-based approaches to Virtual Diagnostic Solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源