论文标题

Yule树中外部分支长度的分布

Distribution of external branch lengths in Yule trees

论文作者

Disanto, Filippo, Fuchs, Michael

论文摘要

Yule分支过程是人口遗传学中随机产生基因树拓扑结构的经典模型。它生成了二进制排名的树(也称为“历史”),其中有有限的叶子叶子。我们研究长度$ \ ell_1> \ ell_2> ...> \ ell_k> ... ... yule生成的大小$ n $的随机历史记录的外部分支的$,其中外部分支的长度定义为其父节点的等级。当$ n \ rightArrow \ infty $时,我们表明,随机变量$ \ ell_k $,一旦将$ \ frac {n- \ ell_k} {\ sqrt {\ sqrt {n/2}} $重新定制,遵循$ 2K $ nim of y Mathbb e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e el y n viral n friafe and n viral n。 $ \ mathbb v(\ ell_k)\ sim n \ big(k- \ frac {πk^2} {16^k} \ binom {2k} {2k} {k}^2 \ big)$。我们的结果有助于研究Yule产生的基因树的组合特征,其中外部分支与影响各个基因拷贝的单胎突变有关。

The Yule branching process is a classical model for the random generation of gene tree topologies in population genetics. It generates binary ranked trees -- also called "histories" -- with a finite number $n$ of leaves. We study the lengths $\ell_1 > \ell_2 > ... > \ell_k > ...$ of the external branches of a Yule generated random history of size $n$, where the length of an external branch is defined as the rank of its parent node. When $n \rightarrow \infty$, we show that the random variable $\ell_k$, once rescaled as $\frac{n-\ell_k}{\sqrt{n/2}}$, follows a $χ$-distribution with $2k$ degrees of freedom, with mean $\mathbb E(\ell_k) \sim n$ and variance $\mathbb V(\ell_k) \sim n \big(k-\frac{πk^2}{16^k} \binom{2k}{k}^2\big)$. Our results contribute to the study of the combinatorial features of Yule generated gene trees, in which external branches are associated with singleton mutations affecting individual gene copies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源