论文标题
量子人造视力用于制造中的缺陷检测
Quantum artificial vision for defect detection in manufacturing
论文作者
论文摘要
在本文中,我们考虑了使用嘈杂的中间量子量子(NISQ)设备的几种用于量子计算机视觉的算法,并根据其经典对应物进行基准解决的问题。具体而言,我们考虑了两种方法:基于通用门的量子计算机上的量子支持向量机(QSVM),以及Qubost在量子退火器上。量子视觉系统是针对图像的不平衡数据集进行基准测试的,其目的是检测制成的汽车件中的缺陷。我们看到,量子算法的表现以几种方式优于其经典对应物,Qboost允许使用当今的量子退火器分析更大的问题。还讨论了数据预处理,包括降低维度和对比度增强,以及Qboost中的高参数调整。据我们所知,这是量子计算机视觉系统的首次实施,用于制造生产线中的工业相关性问题。
In this paper we consider several algorithms for quantum computer vision using Noisy Intermediate-Scale Quantum (NISQ) devices, and benchmark them for a real problem against their classical counterparts. Specifically, we consider two approaches: a quantum Support Vector Machine (QSVM) on a universal gate-based quantum computer, and QBoost on a quantum annealer. The quantum vision systems are benchmarked for an unbalanced dataset of images where the aim is to detect defects in manufactured car pieces. We see that the quantum algorithms outperform their classical counterparts in several ways, with QBoost allowing for larger problems to be analyzed with present-day quantum annealers. Data preprocessing, including dimensionality reduction and contrast enhancement, is also discussed, as well as hyperparameter tuning in QBoost. To the best of our knowledge, this is the first implementation of quantum computer vision systems for a problem of industrial relevance in a manufacturing production line.