论文标题
机器人叶检索的综合致动感框架:检测,定位和切割
An Integrated Actuation-Perception Framework for Robotic Leaf Retrieval: Detection, Localization, and Cutting
论文作者
论文摘要
精确农业的当代机器人主要集中于自动收获或遥感以监测作物健康。关于在现场收集物理样品并将其保留以进行进一步分析的工作相对较少。通常,果园种植者手动收集样品叶子,并利用它们进行茎潜力测量,以分析树木健康并确定灌溉常规。尽管该技术受益于果园的管理,但收集,评估和解释测量的过程需要大量的人工劳动,并且通常会导致不经常采样。自动抽样可以为种植者提供高度准确和及时的信息。这种自动化的原位叶分析中的第一步是识别并切割从树上的叶子。此检索过程需要新的驱动和感知方法。我们提出了一种使用深度摄像头的点云数据来检测和定位候选叶子的技术。该技术在鳄梨树的室内和室外点云上进行了测试。然后,我们在六道机器人臂上使用定制的叶片剪裁最终效应器,通过从鳄梨树上切下叶子来测试拟议的检测和定位技术。使用真正的鳄梨树进行实验测试表明,我们提出的方法可以使我们的移动操纵器和自定义最终效果系统能够成功检测,定位和切割的叶子。
Contemporary robots in precision agriculture focus primarily on automated harvesting or remote sensing to monitor crop health. Comparatively less work has been performed with respect to collecting physical leaf samples in the field and retaining them for further analysis. Typically, orchard growers manually collect sample leaves and utilize them for stem water potential measurements to analyze tree health and determine irrigation routines. While this technique benefits orchard management, the process of collecting, assessing, and interpreting measurements requires significant human labor and often leads to infrequent sampling. Automated sampling can provide highly accurate and timely information to growers. The first step in such automated in-situ leaf analysis is identifying and cutting a leaf from a tree. This retrieval process requires new methods for actuation and perception. We present a technique for detecting and localizing candidate leaves using point cloud data from a depth camera. This technique is tested on both indoor and outdoor point clouds from avocado trees. We then use a custom-built leaf-cutting end-effector on a 6-DOF robotic arm to test the proposed detection and localization technique by cutting leaves from an avocado tree. Experimental testing with a real avocado tree demonstrates our proposed approach can enable our mobile manipulator and custom end-effector system to successfully detect, localize, and cut leaves.