论文标题

Tagrec ++:层次结构标签意识网络,用于问题分类

TagRec++: Hierarchical Label Aware Attention Network for Question Categorization

论文作者

Viswanathan, Venktesh, Mohania, Mukesh, Goyal, Vikram

论文摘要

在线学习系统具有成绩单,书籍和问题形式的多个数据存储库。为了易于访问,此类系统根据层次结构性质(主题 - 主题)的明确分类法组织内容。将输入分类为层次标签的任务通常被视为平坦的多类分类问题。这种方法忽略了输入中的术语与层次标签中的令牌之间的语义相关性。当它们仅将叶片节点视为标签时,替代方法也患有类不平衡。为了解决这些问题,我们将任务制定为一个密集的检索问题,以检索每个内容的适当层次标签。在本文中,我们处理问题。我们将层次标签建模为其令牌的组成,并使用有效的跨注意机制将信息与内容术语表示融合。我们还提出了一种自适应内部的硬采样方法,随着培训的进行,该方法可以更好地取消负面影响。我们证明了所提出的方法\ textIt {tagrec ++}在问题数据集上的现有最新方法均超过了recke@k所测量的现有最新方法。此外,我们演示了\ textit {tagrec ++}的零射击功能以及适应标签更改的能力。

Online learning systems have multiple data repositories in the form of transcripts, books and questions. To enable ease of access, such systems organize the content according to a well defined taxonomy of hierarchical nature (subject-chapter-topic). The task of categorizing inputs to the hierarchical labels is usually cast as a flat multi-class classification problem. Such approaches ignore the semantic relatedness between the terms in the input and the tokens in the hierarchical labels. Alternate approaches also suffer from class imbalance when they only consider leaf level nodes as labels. To tackle the issues, we formulate the task as a dense retrieval problem to retrieve the appropriate hierarchical labels for each content. In this paper, we deal with categorizing questions. We model the hierarchical labels as a composition of their tokens and use an efficient cross-attention mechanism to fuse the information with the term representations of the content. We also propose an adaptive in-batch hard negative sampling approach which samples better negatives as the training progresses. We demonstrate that the proposed approach \textit{TagRec++} outperforms existing state-of-the-art approaches on question datasets as measured by Recall@k. In addition, we demonstrate zero-shot capabilities of \textit{TagRec++} and ability to adapt to label changes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源