论文标题
卡勒·爱因斯坦(Kahler Einstein
Uniqueness of Tangent Cone of Kahler Einstein Metrics on Singular Varieties with Crepant Singularities
论文作者
论文摘要
令$(x,l)$为偏光的卡拉比Yau品种(或典型的两极化品种),具有毛p的奇异性。假设$ω__{ke} \在C_1(L)$中(或C_1(K_x)$中的$ω__{ke} \是唯一的Ricci平面电流(或Kahler Einstein电流(具有负量表曲率的Kahler Einstein电流),其本地有限势构建在[18]中,我们在[18]中显示了当地的$ p $ p $ p $ p \ p \ p p \ p,
Let $(X, L)$ be a polarized Calabi Yau variety (or canonical polarized variety) with crepant singularity. Suppose $ω_{KE} \in c_1(L)$ (or $ω_{KE} \in c_1(K_X)$) is the unique Ricci flat current (or Kahler Einstein current with negative scalar curvature) with local bounded potential constructed in [18], we show that the local tangent at any point $p \in X$ of metric $ω_{KE}$ is unique