论文标题

与高斯和应用的三角多项式的频率无关

A frequency-independent bound on trigonometric polynomials of Gaussians and applications

论文作者

Kong, Fanhao, Zhao, Wenhao

论文摘要

我们证明了与频率无关的一类奇异高斯随机场的三角函数的结合,这自然来自奇异随机PDES的弱普遍性问题。这使我们能够将微观模型的非线性和动力学$φ^4_3 $在[HX19]和[FG19]中的非线性中减少到PDE结构所需的规律性假设。

We prove a frequency-independent bound on trigonometric functions of a class of singular Gaussian random fields, which arise naturally from weak universality problems for singular stochastic PDEs. This enables us to reduce the regularity assumption on the nonlinearity of the microscopic models in KPZ and dynamical $Φ^4_3$ in [HX19] and [FG19] to that required by PDE structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源