论文标题
限制域中的非等热Navier-Stokes-Korteweg方程的放松模型
A Relaxation Model for the Non-Isothermal Navier-Stokes-Korteweg Equations in Confined Domains
论文作者
论文摘要
Navier-Stokes-Korteweg(NSK)系统是基于范德华的经典扩散界面模型。扩散界面方法已引起了多孔介质中的两相流的极大兴趣。但是,对于NSK方程的数值解决方案,必须面对两个主要挑战。首先,由于线性动量和总能量方程中的三阶项,需要扩展的数值模板。另外,线性动量方程中的色散贡献可阻止直接使用接触角边界条件。其次,任何实际气体方程式都是基于非凸起的Helmholtz自由能电位,这可能会导致一阶通量的Jacobian的特征值成为Spinodal区域内的假想数。在这项工作中,提出了一种热力学一致的松弛模型,用于近似NSK方程。该模型由热力学一致的非平衡边界条件表示赞赏,这些条件考虑到接触角效应。由于放松方法,可以将Korteweg张量在线性动量和总能量方程式中的贡献减少到二阶项,从而可以直接实施数值方案中的接触角边界条件。此外,修改压力函数的定义使得能够制定一阶通量,这些通量在整个旋转区域中仍然严格夸张。目前的工作是对等温NSK方程的先前呈现的抛物线松弛模型的概括。
The Navier-Stokes-Korteweg (NSK) system is a classical diffuse interface model which is based on van der Waals theory of capillarity. Diffuse interface methods have gained much interest to model two-phase flow in porous media. However, for the numerical solution of the NSK equations two major challenges have to be faced. First, an extended numerical stencil is required due to a third-order term in the linear momentum and the total energy equations. In addition, the dispersive contribution in the linear momentum equations prevents the straightforward use of contact angle boundary conditions. Secondly, any real gas equation of state is based on a non-convex Helmholtz free energy potential which may cause the eigenvalues of the Jacobian of the first-order fluxes to become imaginary numbers inside the spinodal region. In this work, a thermodynamically consistent relaxation model is presented which is used to approximate the NSK equations. The model is complimented by thermodynamically consistent non-equilibrium boundary conditions which take contact angle effects into account. Due to the relaxation approach, the contribution of the Korteweg tensor in the linear momentum and total energy equations can be reduced to second-order terms which enables a straightforward implementation of contact angle boundary conditions in a numerical scheme. Moreover, the definition of a modified pressure function enables to formulate first-order fluxes which remain strictly hyperbolic in the entire spinodal region. The present work is a generalization of a previously presented parabolic relaxation model for the isothermal NSK equations.