论文标题

过渡金属复合物的积极学习探索,以发现对方法不敏感和合成的发色团

Active Learning Exploration of Transition Metal Complexes to Discover Method-Insensitive and Synthetically Accessible Chromophores

论文作者

Duan, Chenru, Nandy, Aditya, Terrones, Gianmarco, Kastner, David W., Kulik, Heather J.

论文摘要

具有地球丰富过渡金属的过渡金属发色团是其在照明和无毒生物成像中应用的重要设计目标,但是它们的设计受到稀有配合物的稀缺性,这些复合物同时在可见的区域以及定义明确的地面状态中具有最佳的靶标吸收能量。机器学习(ML)加速发现可以通过启用更大空间来克服此类挑战,但受到ML模型训练中使用的数据的保真度的限制,这通常来自单个近似密度的功能。为了解决这一限制,我们搜索了雅各布斯梯子多个梯级的23个密度功能近似之间的预测共识。为了加速在可见区域中吸收能量的复合物,同时最大程度地减少了MR角色,我们使用2D有效的全局优化来采样来自数百万个复合物空间的候选候选候选低自旋发色团。尽管在这个较大的化学空间中,潜在的发色团的稀缺性(即大约0.01 \%),但随着ML模型在积极学习过程中的改善,在发现1,000倍的加速度中,我们确定了计算验证较高(即> 10 \%)的候选者的计算验证。来自时间依赖性密度功能理论的有希望发色团的吸收光谱证明了2/3的候选物具有所需的激发态特性。从我们的导线中的组成配体的观察结果表明,文献中表现出有趣的光学特性,体现了我们建造现实的设计空间和主动学习方法的有效性。

Transition metal chromophores with earth-abundant transition metals are an important design target for their applications in lighting and non-toxic bioimaging, but their design is challenged by the scarcity of complexes that simultaneously have optimal target absorption energies in the visible region as well as well-defined ground states. Machine learning (ML) accelerated discovery could overcome such challenges by enabling screening of a larger space, but is limited by the fidelity of the data used in ML model training, which is typically from a single approximate density functional. To address this limitation, we search for consensus in predictions among 23 density functional approximations across multiple rungs of Jacobs ladder. To accelerate the discovery of complexes with absorption energies in the visible region while minimizing MR character, we use 2D efficient global optimization to sample candidate low-spin chromophores from multi-million complex spaces. Despite the scarcity (i.e., approx. 0.01\%) of potential chromophores in this large chemical space, we identify candidates with high likelihood (i.e., > 10\%) of computational validation as the ML models improve during active learning, representing a 1,000-fold acceleration in discovery. Absorption spectra of promising chromophores from time-dependent density functional theory verify that 2/3 of candidates have the desired excited state properties. The observation that constituent ligands from our leads have demonstrated interesting optical properties in the literature exemplifies the effectiveness of our construction of a realistic design space and active learning approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源