论文标题

不平衡问题:重新访问神经崩溃的几何形状

Imbalance Trouble: Revisiting Neural-Collapse Geometry

论文作者

Thrampoulidis, Christos, Kini, Ganesh R., Vakilian, Vala, Behnia, Tina

论文摘要

神经塌陷是指表征类嵌入和分类器重量的几何形状的显着结构特性,这些结构特性是由深网训练超过零训练误差时发现的。但是,此特征仅适用于平衡数据。因此,我们在这里询问是否可以使阶级失衡不变。为此,我们采用了不受限制的功能模型(UFM),这是一种用于研究神经崩溃的最新理论模型,并引入了单纯形编码的标签插值(SELI)作为神经崩溃现象的不变表征。具体而言,我们证明了UFM的跨凝结损失并消失了正则化,无论类别不平衡,嵌入和分类器始终插入单纯形编码的标签矩阵,并且其单个几何形状都由同一标记矩阵的SVD因子确定。然后,我们对确认与SELI几何形状收敛的合成数据集进行了广泛的实验。但是,我们警告说,融合会随着不平衡的增加而恶化。从理论上讲,我们通过表明与平衡的情况不同的情况下支持这一发现,当存在少数民族时,山脊登记在调整几何形状中起着至关重要的作用。这定义了新的问题,并激发了对阶级失衡对一阶方法汇聚到其渐近优先解决方案的速率的影响的进一步研究。

Neural Collapse refers to the remarkable structural properties characterizing the geometry of class embeddings and classifier weights, found by deep nets when trained beyond zero training error. However, this characterization only holds for balanced data. Here we thus ask whether it can be made invariant to class imbalances. Towards this end, we adopt the unconstrained-features model (UFM), a recent theoretical model for studying neural collapse, and introduce Simplex-Encoded-Labels Interpolation (SELI) as an invariant characterization of the neural collapse phenomenon. Specifically, we prove for the UFM with cross-entropy loss and vanishing regularization that, irrespective of class imbalances, the embeddings and classifiers always interpolate a simplex-encoded label matrix and that their individual geometries are determined by the SVD factors of this same label matrix. We then present extensive experiments on synthetic and real datasets that confirm convergence to the SELI geometry. However, we caution that convergence worsens with increasing imbalances. We theoretically support this finding by showing that unlike the balanced case, when minorities are present, ridge-regularization plays a critical role in tweaking the geometry. This defines new questions and motivates further investigations into the impact of class imbalances on the rates at which first-order methods converge to their asymptotically preferred solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源