论文标题
可变形颗粒的料斗流
Hopper flows of deformable particles
论文作者
论文摘要
大量实验和计算研究表明,颗粒材料的连续料斗流量遵守贝弗鲁的方程,该方程将体积流量$ q $与孔口宽度$ w $:$ q \ sim(w/σ_{\ rm avg}ββ$ q $ q \ sim(w/σ_{\ rm avg} -k)^$ avg} $是$ q \ sim 0 $,幂律缩放指数$β= d-1/2 $,而$ d $是空间维度。对不同背景流体中可变形颗粒的料斗流的最新研究表明,颗粒的刚度和耗散机制也会强烈影响幂律缩放指数$β$。我们对具有动力学摩擦和背景流体耗散的可变形颗粒的料斗流进行计算研究。我们表明,指数$β$随着粘性阻力与动力学摩擦系数的比率连续变化,$λ=ζ/μ$。 $β= D-1/2 $ $λ\ rightArrow 0 $ limit和$ d-3/2 $在$λ\ rightarrow \ infty $ limit中,其中点$λ_c$取决于料斗打开角度$θ_w$。我们还表征了流量的空间结构,并将料斗的空间结构变化与指数$β$的变化相关。偏移$ k $随着粒子的刚度而增加,直到在硬粒子极限下$ k \ sim k _ {\ rm max} $中,其中$ k _ {\ rm max} \ sim 3.5 $对于$λ\ rightarrow \ rightarrow \ rightarrow \ infty $,与$λ\ rightarrow 0 $相比。最后,我们表明,$λ\ rightarrow \ infty $限制中可变形颗粒的料斗流的仿真概括了水中的准油滴的实验结果。
Numerous experimental and computational studies show that continuous hopper flows of granular materials obey the Beverloo equation that relates the volume flow rate $Q$ and the orifice width $w$: $Q \sim (w/σ_{\rm avg}-k)^β$, where $σ_{\rm avg}$ is the average particle diameter, $kσ_{\rm avg}$ is an offset where $Q\sim 0$, the power-law scaling exponent $β=d-1/2$, and $d$ is the spatial dimension. Recent studies of hopper flows of deformable particles in different background fluids suggest that the particle stiffness and dissipation mechanism can also strongly affect the power-law scaling exponent $β$. We carry out computational studies of hopper flows of deformable particles with both kinetic friction and background fluid dissipation in two and three dimensions. We show that the exponent $β$ varies continuously with the ratio of the viscous drag to the kinetic friction coefficient, $λ=ζ/μ$. $β= d-1/2$ in the $λ\rightarrow 0$ limit and $d-3/2$ in the $λ\rightarrow \infty$ limit, with a midpoint $λ_c$ that depends on the hopper opening angle $θ_w$. We also characterize the spatial structure of the flows and associate changes in spatial structure of the hopper flows to changes in the exponent $β$. The offset $k$ increases with particle stiffness until $k \sim k_{\rm max}$ in the hard-particle limit, where $k_{\rm max} \sim 3.5$ is larger for $λ\rightarrow \infty$ compared to that for $λ\rightarrow 0$. Finally, we show that the simulations of hopper flows of deformable particles in the $λ\rightarrow \infty$ limit recapitulate the experimental results for quasi-2D hopper flows of oil droplets in water.