论文标题

多选:半监督领域概括的多任务学习

MultiMatch: Multi-task Learning for Semi-supervised Domain Generalization

论文作者

Qi, Lei, Yang, Hongpeng, Shi, Yinghuan, Geng, Xin

论文摘要

域的概括(DG)旨在学习源域上的模型,以很好地概括看不见的目标域。尽管它取得了巨大的成功,但大多数现有方法都需要用于源域中所有培训样本的标签信息,这在现实世界中既耗时又昂贵。在本文中,我们求助于解决半监督域的概括(SSDG)任务,其中每个源域中都有一些标签信息。为了解决任务,我们首先分析了多域学习的理论,该理论强调了1)减轻域间隙的影响和2)利用所有样品来训练模型可以有效地减少每个源域中的通用误差,从而提高伪标签的质量。根据分析,我们提出了Multimatch,即将FixMatch扩展到多任务学习框架,从而为SSDG生成高质量的伪标签。具体来说,我们将每个培训域视为一个任务(即本地任务),并将所有培训域(即全球任务)组合在一起,以训练看不见的测试域的额外任务。在多任务框架中,我们为每个任务使用独立的BN和分类器,这可以有效地减轻伪标记期间不同领域的干扰。同样,框架中的大多数参数都共享,可以通过所有培训样本进行培训。此外,为了进一步提高伪标签的准确性和模型的概括,我们分别融合了培训和测试期间全球任务和本地任务的预测。一系列实验验证了所提出的方法的有效性,并且在几个基准DG数据集上胜过现有的半监督方法和SSDG方法。

Domain generalization (DG) aims at learning a model on source domains to well generalize on the unseen target domain. Although it has achieved great success, most of existing methods require the label information for all training samples in source domains, which is time-consuming and expensive in the real-world application. In this paper, we resort to solving the semi-supervised domain generalization (SSDG) task, where there are a few label information in each source domain. To address the task, we first analyze the theory of the multi-domain learning, which highlights that 1) mitigating the impact of domain gap and 2) exploiting all samples to train the model can effectively reduce the generalization error in each source domain so as to improve the quality of pseudo-labels. According to the analysis, we propose MultiMatch, i.e., extending FixMatch to the multi-task learning framework, producing the high-quality pseudo-label for SSDG. To be specific, we consider each training domain as a single task (i.e., local task) and combine all training domains together (i.e., global task) to train an extra task for the unseen test domain. In the multi-task framework, we utilize the independent BN and classifier for each task, which can effectively alleviate the interference from different domains during pseudo-labeling. Also, most of parameters in the framework are shared, which can be trained by all training samples sufficiently. Moreover, to further boost the pseudo-label accuracy and the model's generalization, we fuse the predictions from the global task and local task during training and testing, respectively. A series of experiments validate the effectiveness of the proposed method, and it outperforms the existing semi-supervised methods and the SSDG method on several benchmark DG datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源