论文标题

在Metrized图上的可允许的Arakelov-Green功能的计算

Computation of Admissible Arakelov-Green Functions on Metrized Graphs

论文作者

van Dijk, Ruben Merlijn, Kaya, Enis

论文摘要

Metrized图是Riemann表面的非Archimedean类似物,这些图表上的Arakelov-Green函数对于算术几何的某些方面至关重要。在本文中,我们给出了在Metrized图上的Arakelov-Green函数的明确公式,从而扩展了Cinkir的Arakelov-Green函数的公式。基于我们的公式,我们在计算机代数系统sagemath中介绍并实现了一种算法,以明确计算此类功能。我们用计算示例说明了算法。

Metrized graphs are nonarchimedean analogues of Riemann surfaces, and Arakelov-Green functions on these graphs are of fundamental importance for some aspects of arithmetic geometry. In the present paper, we give an explicit formula for an admissible Arakelov-Green function on a metrized graph, extending Cinkir's formula for the canonical Arakelov-Green function. Based on our formula, we present and implement an algorithm in the computer algebra system SageMath for explicitly computing such functions. We illustrate our algorithm with computational examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源