论文标题

总节度器:CT图像中104个解剖结构的稳健分割

TotalSegmentator: robust segmentation of 104 anatomical structures in CT images

论文作者

Wasserthal, Jakob, Breit, Hanns-Christian, Meyer, Manfred T., Pradella, Maurice, Hinck, Daniel, Sauter, Alexander W., Heye, Tobias, Boll, Daniel, Cyriac, Joshy, Yang, Shan, Bach, Michael, Segeroth, Martin

论文摘要

我们提出了一个深度学习分割模型,该模型可以自动稳健地分割人体CT图像中所有主要的解剖结构。在这项回顾性研究中,使用了1204次CT检查(从2012,2016和2020年开始)进行分段104个与用例相关的解剖结构(27个器官,59个骨头,10个肌肉,8次肌肉,8艘血管),例如器官的体积,疾病表征,手术或放射治疗计划。从常规临床研究中随机采样了CT图像,因此代表了现实世界中的数据集(不同的年龄,病理,扫描仪,身体部位,序列和位点)。作者在此数据集上训练了NNU-NET分割算法,并计算了骰子相似性系数(骰子)以评估模型的性能。训练有素的算法应用于4004个全身CT检查的第二个数据集,以研究依赖年龄的体积和衰减变化。提出的模型在测试集中显示出很高的骰子评分(0.943),其中包括具有主要病理的广泛临床数据。该模型在单独的数据集(分别为0.932对0.871)上明显优于另一个公开分段模型。衰老研究表明,各种器官组(例如,年龄和主动脉量;自动肌肌肉组织的年龄和平均衰减)之间的年龄和体积之间的显着相关性以及平均衰减。开发的模型可以对104个解剖结构进行稳健而准确的分割。注释的数据集(https://doi.org/10.5281/zenodo.6802613)和工具箱(https://www.github.com/wasserth/totalsegentator)公开。

We present a deep learning segmentation model that can automatically and robustly segment all major anatomical structures in body CT images. In this retrospective study, 1204 CT examinations (from the years 2012, 2016, and 2020) were used to segment 104 anatomical structures (27 organs, 59 bones, 10 muscles, 8 vessels) relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning. The CT images were randomly sampled from routine clinical studies and thus represent a real-world dataset (different ages, pathologies, scanners, body parts, sequences, and sites). The authors trained an nnU-Net segmentation algorithm on this dataset and calculated Dice similarity coefficients (Dice) to evaluate the model's performance. The trained algorithm was applied to a second dataset of 4004 whole-body CT examinations to investigate age dependent volume and attenuation changes. The proposed model showed a high Dice score (0.943) on the test set, which included a wide range of clinical data with major pathologies. The model significantly outperformed another publicly available segmentation model on a separate dataset (Dice score, 0.932 versus 0.871, respectively). The aging study demonstrated significant correlations between age and volume and mean attenuation for a variety of organ groups (e.g., age and aortic volume; age and mean attenuation of the autochthonous dorsal musculature). The developed model enables robust and accurate segmentation of 104 anatomical structures. The annotated dataset (https://doi.org/10.5281/zenodo.6802613) and toolkit (https://www.github.com/wasserth/TotalSegmentator) are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源